Abstract:
A catheter having a polymeric reinforcing member at a junction between shaft sections such as a rapid exchange catheter junction. The polymeric reinforcing member is around or within the tubular member defining the inflation lumen or the tubular member defining the guidewire lumen at the rapid exchange junction to prevent or inhibit damage to the tubular members defining the inflation lumen and/or guidewire lumen during assembly or use of a balloon catheter. In one embodiment, the polymeric reinforcing member is formed of a first polymeric material having a glass transition temperature greater than a glass transition temperature of a second polymeric material forming the distal portion of the proximal tubular member or the proximal portion of the inner tubular member. The first polymeric material forming the polymeric reinforcing member is preferably a high temperature, high modulus material, such as polyimide, and most preferably a thermoset polyimide.
Abstract:
Medical devices or components thereof, and particularly intracorporeal devices for therapeutic or diagnostic uses, which are formed at least in part of a polymeric material and a ferromagnetic or paramagnetic material, so that the medical device or component thereof is visible on magnetic resonance imaging (MRI) scans. In one embodiment, the medical device is a balloon catheter having an MRI visible balloon. In a presently preferred embodiment, there is an insufficient amount of the ferromagnetic or paramagnetic material within a wall of the balloon or coated onto a wall of the balloon to make the balloon radiopaque.
Abstract:
A catheter having an multilayered shaft section with a first layer formed of a polyimide first material and a second layer formed of a second material. In a presently preferred embodiment, the polyimide material is a thermoset polyimide. However, in alternative embodiments, a thermoplastic polyimide is used. The thermoset polyimide has a very high glass transition temperature (Tg) of approximately 400null C. (as measured by differential scanning calorimetry), and excellent dimensional stability at the processing temperature of polyamides commonly used in catheter components. As a result, during formation and assembly of the catheter, production of a thin polyimide layer with controlled dimensions is facilitated. The polyimide has a high modulus and provides a thin walled yet highly pushable shaft section, while the second layer provides kink resistance. In one embodiment, the second material is selected from the group consisting of a polyamide material and a polyurethane material.
Abstract:
An inflatable member such as a balloon which is formed at least in part of a polyamide/polyether block copolymer thermoplastic elastomer, commonly referred to as polyether block amide (PEBA). The presently preferred PEBA copolymer is polyamide/polyether polyester copolymer, such as PEBAXnull. The balloon of the invention exhibits high tensile strength, high elongation, and low flexural moduli. The balloon may be formed as a single layer of PEBA, or as a multilayer coextrudate having at least one PEBA layer. The balloon may be 100% PEBA or a blend of PEBA with another polymer, such as nylon.
Abstract:
A method of sterilizing a medical device component, such as a catheter balloon, in which an electron beam (i.e., e-beam) is applied to the component in an evacuated or inert gas-filled container. The method of the invention allows for electron beam sterilization without significant degradation of the component polymeric material. In one embodiment, the device component is configured to be pressurized or expanded during use. The method of the invention provides a component with a rupture pressure that is not significantly decreased due to electron beam sterilization. Another aspect of the invention is a medical device component, e-beam sterilized according to a method of the invention. A variety of medical device components can be sterilized by the method of the invention, and particularly intracorporeal devices for therapeutic or diagnostic purposes, such as balloon catheters, catheter shafts and balloons, stent covers, and vascular grafts.
Abstract:
A catheter having an elongated shaft which has a multilayered distal tip with a first layer formed of a polyimide first material and a second layer formed of a polymeric second material. In one embodiment the multilayered distal tip is a separate member, distal to the distal end of a proximal portion of the shaft. In another embodiment, the shaft has an outer tubular member, and a multilayered inner tubular member with a distal end which forms the multilayered distal tip of the shaft. In a presently preferred embodiment, the polyimide material is a thermoset polyimide. In one embodiment, the polymeric second material is a polyamide material.
Abstract:
Medical devices, and particularly intracorporeal devices for therapeutic or diagnostic uses, having a component chemically modified by plasma polymerization. The medical device comprises a substrate with a plasma polymerized functionality bonded to a surface of at least a section thereof. The plasma polymerized film on a first component of the medical device allows for bonding an agent or a second component to the first component. In one embodiment, the plasma polymerized film facilitates fusion or adhesive bonding of a first component to a second component formed of a material which is dissimilar to, incompatible with, or otherwise not readily bondable to the substrate material of the first component. In another embodiment, a bioactive agent is bonded to the plasma polymerized film on the component, for presenting or delivering the bioactive agent within a body lumen of the patient.