Dual rotor electrical machines
    1.
    发明授权

    公开(公告)号:US11575301B2

    公开(公告)日:2023-02-07

    申请号:US17146381

    申请日:2021-01-11

    Abstract: A dual-rotor machine comprising a dual rotor support structure rotatably connected to a frame. A stationary stator is disposed between the rotors and is fixed to the frame. An inner rotor and outer rotor, each comprising a permanent magnet Halbach array, are coaxially disposed with the stator and are rotable about the stator. In this configuration, the inner rotor channels its magnetic flux to its outside, while the outer rotor channels its magnetic flux to its inside. The magnetic flux density at the stator for the dual-rotor machine can be as high as 2 Tesla or higher for high-grade neodymium-iron-boron permanent magnet material, and the stored magnetic energy for conversion to mechanical or electrical energy available to the stator may be at least 0.5 kJ/m. The rotor Halbach arrays may comprise monolithic permanent magnets with continuously variable magnetic field direction.

    Dual-rotor synchronous electrical machines

    公开(公告)号:US10892672B2

    公开(公告)日:2021-01-12

    申请号:US16089622

    申请日:2017-03-30

    Abstract: A dual-rotor machine comprising a dual rotor support structure rotatably connected to a frame. A stationary stator is disposed between the rotors and is fixed to the frame. An inner rotor and outer rotor, each comprising a permanent magnet Halbach array, are coaxially disposed with the stator and are rotable about the stator. In this configuration, the inner rotor channels its magnetic flux to its outside, while the outer rotor channels its magnetic flux to its inside. The magnetic flux density at the stator for the dual-rotor machine can be as high as 2 Tesla or higher for high-grade neodymium-iron-boron permanent magnet material, and the stored magnetic energy for conversion to mechanical or electrical energy available to the stator may be at least 0.5 kJ/m. The rotor Halbach arrays may comprise monolithic permanent magnets with continuously variable magnetic field direction.

    DUAL-ROTOR SYNCHRONOUS ELECTRICAL MACHINES
    3.
    发明申请

    公开(公告)号:US20190109526A1

    公开(公告)日:2019-04-11

    申请号:US16089622

    申请日:2017-03-30

    Abstract: A dual-rotor machine comprising a dual rotor support structure rotatably connected to a frame. A stationary stator is disposed between the rotors and is fixed to the frame. An inner rotor and outer rotor, each comprising a permanent magnet Halbach array, are coaxially disposed with the stator and are rotable about the stator. In this configuration, the inner rotor channels its magnetic flux to its outside, while the outer rotor channels its magnetic flux to its inside. The magnetic flux density at the stator for the dual-rotor machine can be as high as 2 Tesla or higher for high-grade neodymium-iron-boron permanent magnet material, and the stored magnetic energy for conversion to mechanical or electrical energy available to the stator may be at least 0.5 kJ/m. The rotor Halbach arrays may comprise monolithic permanent magnets with continuously variable magnetic field direction.

    DUAL ROTOR ELECTRICAL MACHINES
    7.
    发明申请

    公开(公告)号:US20210273540A1

    公开(公告)日:2021-09-02

    申请号:US17146381

    申请日:2021-01-11

    Abstract: A dual-rotor machine comprising a dual rotor support structure rotatably connected to a frame. A stationary stator is disposed between the rotors and is fixed to the frame. An inner rotor and outer rotor, each comprising a permanent magnet Halbach array, are coaxially disposed with the stator and are rotable about the stator. In this configuration, the inner rotor channels its magnetic flux to its outside, while the outer rotor channels its magnetic flux to its inside. The magnetic flux density at the stator for the dual-rotor machine can be as high as 2 Tesla or higher for high-grade neodymium-iron-boron permanent magnet material, and the stored magnetic energy for conversion to mechanical or electrical energy available to the stator may be at least 0.5 kJ/m. The rotor Halbach arrays may comprise monolithic permanent magnets with continuously variable magnetic field direction.

Patent Agency Ranking