摘要:
Various embodiments of the present disclosure provide a tail-sitter aircraft having a leg assembly convertible from landing gear into a rear fuselage and empennage (or a tail assembly) of the aircraft. Generally, the leg assembly includes multiple legs movable from a closed configuration in which the legs form the tail assembly of the tail-sitter aircraft to an open configuration in which the legs form the landing gear of the tail-sitter aircraft (and vice-versa).
摘要:
For retrieval of a hovering aircraft, a cable, bar, or similar fixture is suspended in an approximately horizontal orientation across the retrieval area between two well-separated supports. The aircraft slowly flies into this fixture, which then slides along the aircraft in a direction approximately parallel with the aircraft's thrust line. This leads to the aircraft becoming fastened to the fixture by an interceptor or aircraft capturer, which in alternative embodiments are respectively on the aircraft or the fixture or both. Thrust is then reduced, and the aircraft comes to rest hanging from the fixture for subsequent removal. Retrieval is thus accomplished with simple and economical apparatus, light and unobtrusive elements on the aircraft, low risk of damage, and only moderate piloting accuracy.
摘要:
Various embodiments of the present disclosure provide an apparatus and method for launch and retrieval of a hovering aircraft. Generally, the apparatus of the present disclosure is configured to capture a hovering aircraft between two or more fingers of an aircraft capturer, guide the captured aircraft into a docking station for servicing and/or storage, and launch the aircraft from the docking station. The apparatus of the present disclosure is thus configured to bring the aircraft from an imprecise, irregular hover into a secure and well-controlled rest state. The tolerance of imprecision provided by the apparatus makes it particularly suited for use under a practical conditions such as aboard a small boat in a rough sea.
摘要:
Various embodiments of the present disclosure provide an apparatus configured to automatically retrieve, service, and launch an aircraft. For retrieval, the aircraft drops a weighted cable, and pulls it at low relative speed into a broad aperture of the apparatus. In certain instances, the cable is dragged along guiding surfaces of the apparatus into and through a slot until its free end is captured. The aircraft becomes anchored to the apparatus, and is pulled downward by the cable into a receptacle. Guiding surfaces of the receptacle adjust the position and orientation of a probe on the aircraft, directing the probe to mate with a docking fixture of the apparatus. Once mated, the aircraft is automatically shut down and serviced. When desired, the aircraft is automatically started and tested in preparation for launch, and then released into free flight. A full ground-handling cycle is thus accomplished with a simple, economical apparatus.
摘要:
Automated launch and retrieval of a “tail-sitting” VTOL aircraft is accomplished by exploiting the natural stability of hover when restrained in tension by an upwind wing tip. For retrieval, a flexible rod is lifted into contact with the trailing edge of the upwind wing as the aircraft translates downwind overhead. Sliding between the rod and wing leads to interlocking of hooks at the rod end and wing tip, while the aircraft swings into a stable tethered hover downwind of the rod. The rod is then used to pull the aircraft upwind into a fixture for secure parking and servicing. After servicing, the aircraft lifts-off into tethered hover, and power margin for climb is assessed. If the aircraft is judged to have sufficient power safely to proceed, then the interlocking hooks are disengaged, leaving the aircraft to climb away in free flight.
摘要:
Various embodiments of the present disclosure provide an apparatus configured to automatically retrieve, service, and launch an aircraft. For retrieval, the aircraft drops a weighted cable, and pulls it at low relative speed into a broad aperture of the apparatus. In certain instances, the cable is dragged along guiding surfaces of the apparatus into and through a slot until its free end is captured. The aircraft becomes anchored to the apparatus, and is pulled downward by the cable into a receptacle. Guiding surfaces of the receptacle adjust the position and orientation of a probe on the aircraft, directing the probe to mate with a docking fixture of the apparatus. Once mated, the aircraft is automatically shut down and serviced. When desired, the aircraft is automatically started and tested in preparation for launch, and then released into free flight. A full ground-handling cycle is thus accomplished with a simple, economical apparatus.
摘要:
Various embodiments of the present disclosure provide an apparatus configured to automatically retrieve, service, and launch an aircraft. For retrieval, the aircraft drops a weighted cable, and pulls it at low relative speed into a broad aperture of the apparatus. In certain instances, the cable is dragged along guiding surfaces of the apparatus into and through a slot until its free end is captured. The aircraft becomes anchored to the apparatus, and is pulled downward by the cable into a receptacle. Guiding surfaces of the receptacle adjust the position and orientation of a probe on the aircraft, directing the probe to mate with a docking fixture of the apparatus. Once mated, the aircraft is automatically shut down and serviced. When desired, the aircraft is automatically started and tested in preparation for launch, and then released into free flight. A full ground-handling cycle is thus accomplished with a simple, economical apparatus.
摘要:
For retrieval of a hovering aircraft, a cable, bar, or similar fixture is suspended in an approximately horizontal orientation across the retrieval area between two well-separated supports. The aircraft slowly flies into this fixture, which then slides along the aircraft in a direction approximately parallel with the aircraft's thrust line. This leads to the aircraft becoming fastened to the fixture by an interceptor or aircraft capturer, which in alternative embodiments are respectively on the aircraft or the fixture or both. Thrust is then reduced, and the aircraft comes to rest hanging from the fixture for subsequent removal. Retrieval is thus accomplished with simple and economical apparatus, light and unobtrusive elements on the aircraft, low risk of damage, and only moderate piloting accuracy.
摘要:
An apparatus and method for automated launch, retrieval, and servicing of a hovering aircraft is provided. The apparatus includes a line which is elevatable while maintaining a principally horizontal axis. For retrieval, the aircraft translates principally spanwise over the line, following a path which is principally horizontal and normal to the line. At an appropriate moment, the line is elevated and contacts the aircraft's wing. As the aircraft continues translating, the line slides along the wing until captured in a cleat. The aircraft is then stably tethered in hover, and its position can be manipulated by articulating the line, such as to guide the aircraft into a docking station. For launch the aircraft lifts itself into hover while tethered to the line. Articulation of the line guides the aircraft into a launch position, at which point the line is disconnected from the cleat, thereby releasing the aircraft.
摘要:
Automated launch and retrieval of a “tail-sitting” VTOL aircraft is accomplished by exploiting the natural stability of hover when restrained in tension by an upwind wing tip. For retrieval, a flexible rod is lifted into contact with the trailing edge of the upwind wing as the aircraft translates downwind overhead. Sliding between the rod and wing leads to interlocking of hooks at the rod end and wing tip, while the aircraft swings into a stable tethered hover downwind of the rod. The rod is then used to pull the aircraft upwind into a fixture for secure parking and servicing. After servicing, the aircraft lifts-off into tethered hover, and power margin for climb is assessed. If the aircraft is judged to have sufficient power safely to proceed, then the interlocking hooks are disengaged, leaving the aircraft to climb away in free flight.