摘要:
In one embodiment, a computer system instantiates a queue manager configured to process a plurality of existing queue manager commands on messages in a message queue. The computer system instantiates a virtualized instance of a queue manager in a virtual layer associated with the queue manager in the computing system. The a virtualized queue manager instance provides supplemental queue manager commands usable in addition to existing queue manager commands, such that the queue manager can be used to implement the supplemental commands without substantial modification. The computer system receives an indication that a message in a message queue is to be accessed according to a specified command provided by the instantiated virtualized queue manager instance that is not natively supported by the queue manager and the virtualized queue manager performs the specified supplemental command as indicated by the received indication by performing one or more existing queue manager commands.
摘要:
In one embodiment, a computer system instantiates a queue manager configured to process a plurality of existing queue manager commands on messages in a message queue. The computer system instantiates a virtualized instance of a queue manager in a virtual layer associated with the queue manager in the computing system. The a virtualized queue manager instance provides supplemental queue manager commands usable in addition to existing queue manager commands, such that the queue manager can be used to implement the supplemental commands without substantial modification. The computer system receives an indication that a message in a message queue is to be accessed according to a specified command provided by the instantiated virtualized queue manager instance that is not natively supported by the queue manager and the virtualized queue manager performs the specified supplemental command as indicated by the received indication by performing one or more existing queue manager commands.
摘要:
A messaging system may operate on multiple processor partitions in several configurations to provide queuing and topic subscription services on a large scale. A queue service may receive messages from a multiple transmitting services and distribute the messages to a single service. A topic subscription service may receive messages from multiple transmitting services, but distribute the messages to multiple recipients, often with a filter applied to each recipient where the filter defines which messages may be transmitted by the recipient. Large queues or topic subscriptions may be divided across multiple processor partitions with separate sets of recipients for each partition in some cases, or with duplicate sets of recipients in other cases.
摘要:
A messaging system may operate on multiple processor partitions in several configurations to provide queuing and topic subscription services on a large scale. A queue service may receive messages from a multiple transmitting services and distribute the messages to a single service. A topic subscription service may receive messages from multiple transmitting services, but distribute the messages to multiple recipients, often with a filter applied to each recipient where the filter defines which messages may be transmitted by the recipient. Large queues or topic subscriptions may be divided across multiple processor partitions with separate sets of recipients for each partition in some cases, or with duplicate sets of recipients in other cases.
摘要:
The present invention extends to methods, systems, and computer program products for coordinating resources using a volatile network intermediary. Embodiments provide a mechanism for an network intermediary to facilitate a state coordination pattern between an application and a communication medium when the communication medium does not support the state coordination pattern. In some embodiments, receiving applications can make use of this network intermediary by changing the receive location. However, the receiving application may not be able to distinguish the network intermediary from a native implementation of the state coordination pattern. Further, the network intermediary does not require deployment of a persistent or durable store to coordinate state between receiving applications and the original communication medium.
摘要:
Embodiments are directed to promptly reestablishing communication between nodes in a dynamic computer network and dynamically maintaining an address list in an unstable network. A computer system sends a message to other message queuing nodes in a network, where each node in the message queuing network includes a corresponding persistent unique global identifier. The computer system maintains a list of unique global identifiers and the current network addresses of those network nodes from which the message queuing node has received a message or to which the message queuing node has sent a message. The computer system goes offline for a period of time and upon coming back online, sends an announcement message to each node maintained in the list indicating that the message queuing node is ready for communication in the message queuing network, where each message includes the destination node's globally unique identifier and the node's current network address.
摘要:
Test result data can be classified across multiple tests, test scenarios, and lab runs. Test result files can be parsed by extracting information from them. Extracted information can be compared to failure information in a database. If a match is found, the extracted information can be linked to the failure, creating a history for each failure. New failures can be identified when no match is found. Failure data can be cross-referenced to further aid in results analysis. For each failure, lists of useful information can be accessed. Analysis information can be associated with failures, for example whether the failure is new, occurred previously, is for a different reason than expected, or has been added to a baseline of expected failures. A Graphic User Interface (“GUI”) is also provided to expose the analyzed results to the result analyzers.
摘要:
Embodiments are directed to promptly reestablishing communication between nodes in a dynamic computer network and dynamically maintaining an address list in an unstable network. A computer system sends a message to other message queuing nodes in a network, where each node in the message queuing network includes a corresponding persistent unique global identifier. The computer system maintains a list of unique global identifiers and the current network addresses of those network nodes from which the message queuing node has received a message or to which the message queuing node has sent a message. The computer system goes offline for a period of time and upon coming back online, sends an announcement message to each node maintained in the list indicating that the message queuing node is ready for communication in the message queuing network, where each message includes the destination node's globally unique identifier and the node's current network address.
摘要:
Embodiments are directed to promptly reestablishing communication between nodes in a dynamic computer network and dynamically maintaining an address list in an unstable network. A computer system sends a message to other message queuing nodes in a network, where each node in the message queuing network includes a corresponding persistent unique global identifier. The computer system maintains a list of unique global identifiers and the current network addresses of those network nodes from which the message queuing node has received a message or to which the message queuing node has sent a message. The computer system goes offline for a period of time and upon coming back online, sends an announcement message to each node maintained in the list indicating that the message queuing node is ready for communication in the message queuing network, where each message includes the destination node's globally unique identifier and the node's current network address.
摘要:
A queue management system may store a queue of messages in a main queue. When a message is processed by an application, the message may be moved to a subqueue. In the subqueue, the message may be locked from other applications. After processing the message, the application may delete the message from the subqueue and complete the action required. If the application fails to respond in a timely manner, the message may be moved from the subqueue to the main queue and released for another application to service the message. If the application responds after the time out period, a fault may occur when the application attempts to delete the message from the subqueue. Such an arrangement allows a “peek and lock” functionality to be implemented using a subqueue.