Abstract:
Some metallurgical furnaces have a tapblock that is blocked during operation of the furnace. The tapblock may be opened by lancing, drilling, tapping or by other methods to release metal from the furnace. By monitoring acoustic emissions during the opening process, feedback may be provided to improve the opening process and to avoid excessive damage to the tapblock, the cooling elements, a refractory lining of the tapblock or other elements of the metallurgical furnace.
Abstract:
A portable system for non-destructive evaluation of geological material structures comprises an impact device which impacts a spherical surfaced member against the surface of the structure. A vertical displacement transducer and a horizontal displacement transducer detect reflected signals from an interface of the structure, the signals being processed to give a indication of the depth of the interface from the surface of the interface and also provide an evaluation of the physical properties of the structure.
Abstract:
A system for inspecting a refractory furnace having an outer shell and an inner refractory brick lining includes a stress wave generator for generating stress waves that propagate through the outer shell and the refractory brick lining. A stress wave sensor senses reflected stress waves returning to the outer shell. A processing unit in communication with the stress wave sensor processes output generated by the stress wave sensor to generate data representing the condition of the refractory brick lining. In this manner, the location and geometry of anomalies within the refractory brick lining can be determined without requiring the refractory furnace to be shut down.
Abstract:
Some embodiments of the present invention provide systems, methods and apparatus for more accurately determining the thickness of a refractory lining included in an operating metallurgical furnace. Specifically, in some embodiments a transient propagated stress wave is used to determine the condition of a refractory lining, and additionally, provide a systematic way to include the affect that temperature has on the velocity of a compressive wave through a heated refractory material and/or accretions. As identified in aspects of the present invention, and contrary to the common understanding in the art, the velocity of a stress wave, at each frequency and in a refractory material, is not necessarily constant over a temperature range. In accordance with aspects of some specific embodiments of the invention, a scaling factor a can be calculated for each refractory material to adjust for the presumed velocity of the stress wave through each refractory material.
Abstract:
An apparatus and associated method for detecting impending earthquakes includes at least one sensor, and preferably multiple sensors, for mounting on a building or other like structure, and include a transducer for converting vibration signals to electronic impulses. The signals are transmitted to a solid state detection circuit, which distinguishes between extraneous signals and signals indicative of the P-waves which signal an impending earthquake. Discrimination between relevant and non-relevant may be achieved by selecting a minimum amplitude and duration of signals within a selected frequency range, and triggering an alarm when the selected minimums are exceeded. Where multiple sensors are deployed, temporal overlap between selected signals can be assessed for further discrimination.
Abstract:
Various systems and methods for monitoring the level of a feed material layer in a metallurgical furnace are described. At least one non-contact sensor is used to sense a distance between the feed layer and a reference position. A process controller linked to the sensor provides a control signal based upon the sensed distance. The control signal may be used to control various factors in the operation of the metallurgical furnace.
Abstract:
In a first aspect, some embodiments of the invention provide a system for measuring the level of a plurality of phases of a conductive or semi-conductive mixture in a vessel, the system comprising: a vessel configured to hold a conductive or semi-conductive mixture including a plurality of phases, the vessel comprising a sidewall with an interior surface and an exterior surface, a plurality of antennas configured to transmit electromagnetic and/or eddy current signals into the sidewall of the vessel to impinge upon the plurality of phases in the conductive or semi-conductive mixture and to receive corresponding signals reflected from the plurality of phases in the conductive or semi-conductive mixture, the antennas situated at a plurality of different levels along the exterior surface of the vessel sidewall, wherein reflected signals are received, a transmitter module configured to generate electromagnetic and/or eddy current signals in communication with the plurality of antennas, a receiver module configured to receive electromagnetic and/or eddy current signals in communication with the plurality of antennas, a control module in communication with the transmitter module and the receiver module configured to control the operation of the transmitter module and the receiver module, and a signal analysis module in communication with the receiver module configured to process the reflected signals to determine the levels of the plurality of phases of the conductive or semi-conductive mixture within the vessel.
Abstract:
Some embodiments of the present invention provide systems, methods and apparatus for more accurately determining the thickness of a refractory lining included in an operating metallurgical furnace. Specifically, in some embodiments a transient propagated stress wave is used to determine the condition of a refractory lining, and additionally, provide a systematic way to include the affect that temperature has on the velocity of a compressive wave through a heated refractory material and/or accretions. As identified in aspects of the present invention, and contrary to the common understanding in the art, the velocity of a stress wave, at each frequency and in a refractory material, is not necessarily constant over a temperature range. In accordance with aspects of some specific embodiments of the invention, a scaling factor α can be calculated for each refractory material to adjust for the presumed velocity of the stress wave through each refractory material.
Abstract:
Various systems and methods for monitoring the level of a feed material layer in a metallurgical furnace are described. At least one non-contact sensor is used to sense a distance between the feed layer and a reference position. A process controller linked to the sensor provides a control signal based upon the sensed distance. The control signal may be used to control various factors in the operation of the metallurgical furnace.
Abstract:
The described embodiments relate to systems and methods for acoustic monitoring of metallurgical furnace cooling elements. Some metallurgical furnaces have a tapblock that is blocked during operation of the furnace. The tapblock may be opened by lancing, drilling, tapping or by other means to release metal from the furnace. By monitoring acoustic emissions during the opening process, feedback may be provided to improve the opening process and to avoid excessive damage to the tapblock, the cooling elements, a refractory lining of the tapblock or other elements of the metallurgical furnace.