Abstract:
In various embodiments, a method of writing servo information to a recording medium may be provided. The method include forming a first servo pattern (including a servo burst pattern) on a segment of a first track of a first layer of the recording medium, the first track having a track width. The method may further include forming a second servo pattern (including addressing information) on a segment of a second track of a second layer of the recording medium. The second track is arranged from the first track by half the track width.
Abstract:
According to embodiments of the present invention, a method for providing a synchronization signal for at least one of a read operation or a write operation carried out by means of a head in a data storage device is provided. The method includes obtaining a readback servo signal from a storage medium of the data storage device by means of the head, the readback servo signal having at least one frequency associated with a servo track of the storage medium, frequency mixing the readback servo signal with a local signal having a local frequency to provide a frequency mixed signal, and filtering the frequency mixed signal to provide the synchronization signal for at least one of the read operation or the write operation. According to further embodiments of the present invention, a data storage device is also provided.
Abstract:
According to various embodiments, a method for reading data from a storage medium using a reader, wherein the reader includes at least one reader head, may be provided, wherein the storage medium includes a plurality of tracks. The method may include: reading a first signal with a reader head of the reader at a pre-determined position of the storage medium; reading a second signal with a reader head of the reader at the pre-determined position of the storage medium; and determining data stored at the pre-determined position of the storage medium based on the first signal and based on the second signal.
Abstract:
A method for measuring a change in a spacing between a head and a storage medium of a data storage system. The method includes obtaining a first readback signal from the storage medium using the head at a first spacing between the head and the storage medium, determining a first power spectrum density over a frequency range from the obtained first readback signal, obtaining a second readback signal from the storage medium using the head at a second spacing between the head and the storage medium, determining a second power spectrum density over the frequency range from the obtained second readback signal, and providing a measurement indicative of the change in the spacing based on the determined first power spectrum density and the determined second power spectrum density. A data storage system is also provided.
Abstract:
Methods and architecture for monitoring hard disk drive operation is provided. The hard disk drive system provided includes a spindle, a head and a disk with a disk medium including a buried servo layer having a first frequency of data on a first track and a second frequency of data on a second track, the second track adjacent to the first track. The method includes the steps of writing a wide track pattern having a predetermined frequency on a track of a hard disk drive medium, generating a readback signal by reading the pattern from the track, processing the readback signal by mixing the readback signal with a reference signal to obtain a mixed signal having a summed signal and a difference signal, and filtering the mixed signal by a filter centered around the difference signal to generate a measurement signal corresponding to a relative speed change of the spindle and a head-to-disk motion. In addition, filtering a readback signal generated by the head when positioned at the middle of the first track and the second track with a first filter centered at the first frequency and a second filter centered at the second frequency is used to generate signals for determining spindle speed variation, spindle speed jitter, and relative head-disk vibration in the downtrack direction, for synchronizing writing in Two Dimensional Magnetic Recording (TDMR) and for measuring continuous flying height information based on Wallace equations.