Abstract:
A method for producing a component from a fibre-reinforced plastic includes the steps of providing a moulding tool having a tool surface, positioning a first layer of a textile semifinished product comprising dry fibres on the tool surface, arranging a second layer of an electrically conductive, resin-permeable grid on the first layer, arranging an uppermost arrangement of layers, sealing the arrangement of layers by a closure device to form a mould, introducing resin into the mould for infiltration of all the layers with the resin and curing and removal of the component.
Abstract:
A material for use in vacuum bagging a component. The material includes a compound sensitive to moisture, such that an exposure of the compound to moisture or wetting causes a physical and/or chemical change in the compound that is visually detectable in the cover material. A method of leak detection during vacuum bagging involves the steps of: arranging a component in a vacuum bagging assembly, such as to form a fiber-reinforced plastic component; arranging a material according to the invention in the vacuum bagging assembly such that the compound sensitive to wetting or moisture is under, or on an inner side of, a sealing film or vacuum bag of the assembly; applying a vacuum to the vacuum bagging assembly to evacuate a space containing the component and sealed by the sealing film or vacuum bag; and wetting an outer surface of the sealing film or vacuum bag.
Abstract:
A connecting port arrangement for use in an apparatus for producing a composite material component comprising a base member attached to a surface of a foil adapted to seal a mold of the apparatus for producing a composite material component. The base member is provided with a channel extending therethrough. The connecting port arrangement further comprises a punch member adapted to be inserted into the channel formed in the base member and provided with a cutting device suitable to cut at least one opening into the foil.
Abstract:
An assembly for producing a fiber composite workpiece having a base tool, including a first tool part and a second tool part, arranged relative to one another either in a closed position in which they enclose an internal space, or in an open position wherein a preform can be mounted in the internal space and maintained there in a predetermined shape. The base tool includes a connection to convey matrix material into the internal space, and has a device for holding the first and second tool parts together in a closed position. A tool insert is provided which is separate from the base tool, the tool insert being mounted in the internal space of the base tool, and the tool insert including a cavity for accommodating a preform and a shaping surface, facing the cavity, for maintaining the preform in a predetermined shape.
Abstract:
A system for liquid composite moulding includes a first rigid tool part onto which a semi-finished fiber material is positioned, a first vacuum foil arrangeable on the first rigid tool part to provide a first gastight chamber therebetween having a first port, a second vacuum foil and the first vacuum foil providing a second gastight chamber, and granulated material arranged in the second gastight chamber. The semi-finished fiber material is infusible with a matrix material via the first port. A second port is provided at the second gastight chamber for applying a negative pressure thereto. Therein, the granulated material is adapted for forming a second rigid tool part when negative pressure is applied to the second port. I.e. the first vacuum foil, the second vacuum foil and the granulated material function similarly to a vacuum mattress and may be stiffened and collapsed.
Abstract:
A lighting strike protection device for applying automatically to a fiber composite component. The protection device includes a reinforcement structure having a width that is less than a width of the metal strip. The fiber composite component having an integrated lighting strike protection.
Abstract:
A material for use in vacuum bagging a component. The material includes a compound sensitive to moisture, such that an exposure of the compound to moisture or wetting causes a physical and/or chemical change in the compound that is visually detectable in the cover material. A method of leak detection during vacuum bagging involves the steps of: arranging a component in a vacuum bagging assembly, such as to form a fibre-reinforced plastic component; arranging a material according to the invention in the vacuum bagging assembly such that the compound sensitive to wetting or moisture is under, or on an inner side of, a sealing film or vacuum bag of the assembly; applying a vacuum to the vacuum bagging assembly to evacuate a space containing the component and sealed by the sealing film or vacuum bag; and wetting an outer surface of the sealing film or vacuum bag.
Abstract:
A conveying installation by way of which the 3D printing rate can be increased and the reliability of transporting a semi-finished product to be processed in an additive manufacturing machine can be improved. The conveying installation comprises a longitudinal conveying mechanism which conveys the semi-finished product along a conveying direction in that a preferably continuously revolving conveying arrangement, for example a conveyor belt or a conveying belt, engages the semi-finished product in a force-fitting and/or form-fitting manner
Abstract:
For increasing the speed in 3D printing, for avoiding the conveying elements slipping from the conveyed semi-finished product, and for improving the transmission of force from the conveying elements to the semi-finished products to be conveyed, a conveying installation is provided for an additive manufacturing machine. The conveying installation for conveying a semi-finished product comprises a longitudinal conveying mechanism which by means of a periodic movement of at least one conveying element conveys the semi-finished product along a conveying direction which is parallel to the semi-finished product longitudinal axis. The conveying element when moving in the conveying direction acquires the semi-finished product, and when moving counter to the conveying direction is released from the semi-finished product. This results in a movement of the semi-finished product in the conveying direction.
Abstract:
A method of using solid profile rods instead of the usual filament coils for additive manufacturing methods such as 3D printing for industrial applications such as aircraft manufacturing, and to enable a more rapid production of fiber-composite components. The additive manufacturing device, or the 3D printer which generates the component layer by layer, respectively, comprises a material magazine in which a plurality of profile rods are stored. The profile rods are pre-tailored and are adapted to the component layer by layer. The profile rods, when printing, are successively retrieved from the material magazine and, by way of an infeed installation, guided to the nozzle of the additive manufacturing installation and subsequently applied to the printing bed so as to form the component layer by layer.