摘要:
A first process for producing an optically active perfluoroalklylcarbinol derivative includes (a) reacting an optically active imine with a compound that is a hemiacetal of a perfluoroalkylaldehyde or a hydrate of a perfluoroalkylaldehyde to obtain a condensate; and (b) hydrolyzing the condensate under an acid condition. A second process for increasing optical purity of an optically active 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone derivative includes (a) precipitating a racemic crystal of the derivative, from the derivative; and (b) removing the racemic crystal from the derivative. A third process for increasing optical purity of the butanone derivative includes recrystallizing the derivative. Novel compounds are optically active and inactive 4,4,4-trifluoro-3-hydroxybotanoic aryl ester derivatives. A fourth or fifth process for producing an optically active and inactive 4,4,4-trifluoro-3-hydroxybutyric acid aryl ester derivative includes oxidizing an optically active or optically inactive 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone derivative. A sixth process for increasing optical purity of the optically active aryl ester derivative includes recrystallizing the derivative. A seventh process for producing an optically active 4,4,4-trifluoro-3-butanediol includes reducing the optically active aryl ester derivative by a hydride. An eighth or ninth process for producing an optically active or inactive 4,4,4-trifluoro-3-hydroxybutyric acid alkyl ester derivative includes reacting under an acid condition the optically active or optically inactive aryl ester derivative with a lower alcohol. It is possible to suitably combine at least two of the first to ninth processes.
摘要:
A first process for producing an optically active perfluoroalklylcarbinol derivative includes (a) reacting an optically active imine with a compound that is a hemiacetal of a perfluoroalkylaldehyde or a hydrate of a perfinoroalkylaldehyde to obtain a condensate; and (b) hydrolyzing the condensate under an acid condition. A second process for increasing optical purity of an optically active 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone derivative includes (a) precipitating a racemic crystal of the derivative, from the derivative; and (b) removing the racemic crystal from the derivative. A third process for increasing optical purity of the butanone derivative (includes recrystallizing the derivative. Novel compounds are optically active and inactive 4,4,4-trifluoro-3-hydroxybotanoic aryl ester derivatives. A fourth or fifth process for producing an optically active and inactive 4,4,4-trifloro-3-hydroxybutyric acid aryl ester derivative includes oxidizing an optically active or optically inactive 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone derivative. A sixth process for increasing optical purity of the optically active aryl ester derivative includes recrystallizing the derivative. A seventh process for producing an optically active 4,4,4-trifluoro-3-butanediol includes reducing the optically active aryl ester derivative by a hydride. An eighth or ninth process for producing an optically active or inactive 4,4,4-trifluoro-3-hydroxybutyric acid alkyl ester derivative includes reacting under an acid condition the optically active or optically inactive aryl ester derivative with a lower alcohol. It is possible to suitably combine at least two of the first to ninth processes.
摘要:
An optically active 1-(fluoro- or trifluoromethyl-substituted phenyl)ethylamine is produced with high optical purity and in an industrially simple and efficient manner by asymmetrically reducing an optically active imine, obtained by dehydration and condensation of a fluoro- or trifluoromethyl-substituted phenylmethyl ketone and an optically active primary amine under acidic conditions, using a hydride reducing agent to convert to an optically active secondary amine, and subjecting the secondary amine or its salt of an inorganic acid or organic acid to hydrogenolysis. In addition, an optically active 1-(fluoro- or trifluoromethyl-substituted phenyl)ethylamine is purified to an even higher optical purity in an industrially simple and efficient manner by converting the optically active secondary amine of the synthetic intermediate obtained by asymmetric reduction, or an optically active 1-(3,5-bis-trifluoromethylphenyl)ethylamine, one of the target compounds, to an inorganic or organic acid salt followed by recrystallization purification. This ethylamine is an important intermediate of pharmaceuticals and agricultural chemicals.
摘要:
A process for producing an optically active perfluoroalkylcarbinol by reacting an optically active imine with a hemiacetal or hydrate of a perfluoroalkylaldehyde to obtain a condensate, and hydrolyzing the condensate under acidic conditions. Optical purity of optically active 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone compounds may be increased by precipitating and removing a racemic crystal, and also recrystallizing the compound. Novel compounds include optically active and inactive 4,4,4-trifluoro-3-hydroxybutanoic aryl esters. A process for producing optically active or incactive 4,4,4-trifluoro-3-hydroxybutyric acid aryl esters includes oxidizing an optically active or inactive 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone. Optical purity of optically active aryl esters may be increased by recrystallization. Optically active 4,4,4-trifluoro-1,3-butanediol may be produced by reducing the optically active aryl ester with a hydride. Optically active or inactive 4,4,4-trifluoro-3-hydroxybutyric acid alkyl esters are produced by reacting optically active or inactive aryl esters with lower alcohols under acid conditions.