摘要:
A process for producing an optically active perfluoroalkylcarbinol by reacting an optically active imine with a hemiacetal or hydrate of a perfluoroalkylaldehyde to obtain a condensate, and hydrolyzing the condensate under acidic conditions. Optical purity of optically active 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone compounds may be increased by precipitating and removing a racemic crystal, and also recrystallizing the compound. Novel compounds include optically active and inactive 4,4,4-trifluoro-3-hydroxybutanoic aryl esters. A process for producing optically active or incactive 4,4,4-trifluoro-3-hydroxybutyric acid aryl esters includes oxidizing an optically active or inactive 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone. Optical purity of optically active aryl esters may be increased by recrystallization. Optically active 4,4,4-trifluoro-1,3-butanediol may be produced by reducing the optically active aryl ester with a hydride. Optically active or inactive 4,4,4-trifluoro-3-hydroxybutyric acid alkyl esters are produced by reacting optically active or inactive aryl esters with lower alcohols under acid conditions.
摘要:
A first process for producing an optically active perfluoroalklylcarbinol derivative includes (a) reacting an optically active imine with a compound that is a hemiacetal of a perfluoroalkylaldehyde or a hydrate of a perfluoroalkylaldehyde to obtain a condensate; and (b) hydrolyzing the condensate under an acid condition. A second process for increasing optical purity of an optically active 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone derivative includes (a) precipitating a racemic crystal of the derivative, from the derivative; and (b) removing the racemic crystal from the derivative. A third process for increasing optical purity of the butanone derivative includes recrystallizing the derivative. Novel compounds are optically active and inactive 4,4,4-trifluoro-3-hydroxybotanoic aryl ester derivatives. A fourth or fifth process for producing an optically active and inactive 4,4,4-trifluoro-3-hydroxybutyric acid aryl ester derivative includes oxidizing an optically active or optically inactive 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone derivative. A sixth process for increasing optical purity of the optically active aryl ester derivative includes recrystallizing the derivative. A seventh process for producing an optically active 4,4,4-trifluoro-3-butanediol includes reducing the optically active aryl ester derivative by a hydride. An eighth or ninth process for producing an optically active or inactive 4,4,4-trifluoro-3-hydroxybutyric acid alkyl ester derivative includes reacting under an acid condition the optically active or optically inactive aryl ester derivative with a lower alcohol. It is possible to suitably combine at least two of the first to ninth processes.
摘要:
A first process for producing an optically active perfluoroalklylcarbinol derivative includes (a) reacting an optically active imine with a compound that is a hemiacetal of a perfluoroalkylaldehyde or a hydrate of a perfinoroalkylaldehyde to obtain a condensate; and (b) hydrolyzing the condensate under an acid condition. A second process for increasing optical purity of an optically active 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone derivative includes (a) precipitating a racemic crystal of the derivative, from the derivative; and (b) removing the racemic crystal from the derivative. A third process for increasing optical purity of the butanone derivative (includes recrystallizing the derivative. Novel compounds are optically active and inactive 4,4,4-trifluoro-3-hydroxybotanoic aryl ester derivatives. A fourth or fifth process for producing an optically active and inactive 4,4,4-trifloro-3-hydroxybutyric acid aryl ester derivative includes oxidizing an optically active or optically inactive 4,4,4-trifluoro-3-hydroxy-1-aryl-1-butanone derivative. A sixth process for increasing optical purity of the optically active aryl ester derivative includes recrystallizing the derivative. A seventh process for producing an optically active 4,4,4-trifluoro-3-butanediol includes reducing the optically active aryl ester derivative by a hydride. An eighth or ninth process for producing an optically active or inactive 4,4,4-trifluoro-3-hydroxybutyric acid alkyl ester derivative includes reacting under an acid condition the optically active or optically inactive aryl ester derivative with a lower alcohol. It is possible to suitably combine at least two of the first to ninth processes.
摘要:
The present invention provides a process for producing an optically active β-trifluoromethyl-β-hydroxycarbonyl compound represented by formula (3): comprising a step of reacting a fluoral equivalent represented by formula (1): with a carbonyl compound represented by formula (2): in the presence of an optically active amino acid or a derivative thereof.
摘要:
The present invention provides a process for producing an optically active β-trifluoromethyl-β-hydroxycarbonyl compound represented by formula (3): comprising a step of reacting a fluoral equivalent represented by formula (1): with a carbonyl compound represented by formula (2): in the presence of an optically active amino acid or a derivative thereof.
摘要:
An electrochemical device, such as a magnesium-ion battery, comprises a first electrode including a first active material, a second electrode, and an electrolyte located between the first electrode and the second electrode. The electrolyte may include a magnesium compound, such as a magnesium salt. In representative examples, an improved active material includes a group 15 chalcogenide, in particular a bismuth chalcogenide, such as bismuth oxide or other chalcogenide. In various examples, the improved active material may be used in a positive or negative electrode of an example battery.
摘要:
The present invention provides compounds represented by the formula Y+−N(SO2Rf)(CF3). Such a compound can be manufactured through a reaction between M+−N(SO2Rf)(CF3) and Y+−B. The present invention also provides compounds represented by the formula Y+−N(SO2Rf)(CN). Such a compound can be manufactured through a reaction between M+−N(SO2Rf)(CN) and Y+−B. Rf in the above formulae is a perfluoroalkyl group. Y+ is an organic or inorganic cation. −B is an organic or inorganic anion. M+ is an alkali metal cation or a silver cation.
摘要翻译:本发明提供由式Y + -N(SO2Rf)(CF3)表示的化合物。 这种化合物可以通过M + -N(SO 2 R f)(CF 3)和Y + -B之间的反应来制备。 本发明还提供由式Y + -N(SO2Rf)(CN)表示的化合物。 这种化合物可以通过M + -N(SO 2 R f)(CN)和Y + -B之间的反应来制备。 上式中的Rf是全氟烷基。 Y +是有机或无机阳离子。 -B是有机或无机阴离子。 M +是碱金属阳离子或银阳离子。
摘要:
There is provided a battery containing an electrolyte, according to which oxidative decomposition of the electrolyte is suppressed. The battery contains a positive electrode having an active material and an electron conducting material. The electron conducting material has a barrier layer at least on the surface thereof. This barrier layer is substantially constituted from at least one material selected from (a) oxides of elements in group 2 to 14 and the third or subsequent period of the periodic table, (b) carbides of elements in group 2 to 14 and the third or subsequent period of the periodic table, (c) nitrides of elements in group 2 to 14 and the third or subsequent period of the periodic table, and (d) tungsten.
摘要:
Methods for manufacturing semiconductor substrates in which a semiconductor layer for forming semiconductor device therein is formed on a supporting substrate with an insulating film interposed between, with which in forming the semiconductor layer on a substrate on which a buried pattern structure has been formed it is possible to greatly increase the film thickness uniformity of the semiconductor layer and the film thickness controllability, particularly when the semiconductor layer is being formed as an extremely thin film. As a result, it is possible to achieve improved quality and characteristics of the semiconductor substrates and make possible the deployment of such semiconductor substrates to various uses.
摘要:
A rechargeable magnesium-ion battery includes a first electrode, a second electrode, and an electrolyte layer between the first electrode and the second electrode. The electrolyte includes a source of magnesium ions, such as a magnesium salt. The first electrode includes an active material, the active material including indium and tin, for example as a solid solution or intermetallic compound of indium and tin.