摘要:
A sheathed heater comprising a metallic sheath, such as a stainless steel sheath, an electric heating element disposed within the sheath so that an electric current can be supplied thereto, and a filling material filled in the sheath for insulating the heating element from the sheath and the coils of the heating element from each other. Aluminum nitride powder is used as the filling material to prevent oxidation of the heating element by the oxygen discharged from the filling material.
摘要:
A gas sensor has a cylindrical housing case, a gas sensor element as a sensor component, and a filler portion. The filler portion is formed between the inner surface of the cylindrical housing case and the outer surface of the gas sensor element. The filler portion is filled with filler powder composed of talc as a layered compound. Talc is a principal ingredient of the filler powder. The space formed between the cylindrical housing case and the gas sensor element is sealed with the filler powder in the filler portion. The filler powder in the filler portion has a degree of c-axis orientation within a range of 60% to 85%, The filler powder in the filler portion has a porosity of not more than 10%.
摘要:
A gas sensing member has a unit structure and a porous protective layer disposed on the unit structure. The unit structure has a solid electrolyte body, a gas measurement electrode disposed on a surface of the body and exposed to a measured gas entering at a gas inlet, a reference gas electrode disposed on another surface of the body and exposed to a reference gas, and a heater disposed close to the body. The heater has a heater substrate and heating elements disposed in the heater substrate. The heating elements heat the body. The heater substrate has side corner areas placed on side corners of the unit structure and being adjacent to the heating elements. The protective layer is disposed on the gas inlet such that the side corner areas are not covered with the protective layer and are directly exposed to the measured gas.
摘要:
In an oxygen sensor for installation in the exhaust gas system of a vehicle for detecting a concentration of NOx in exhaust gas downstream from a catalytic converter, in which the exhaust gas is passed through a protective layer to an electrode disposed at one side of a solid electrolyte in a sensor element of the oxygen sensor, the protective layer is formed with a combination of values of thickness and porosity which provide improved sensitivity in detecting low levels of NOx in the exhaust gas.
摘要:
A gas sensing element has a solid electrolytic body, a reference gas side electrode provided on a surface of the solid electrolytic body so as to be exposed to a reference gas, and a measured gas side electrode provided on another surface of the solid electrolytic body so as to be exposed to a measured gas. A crystal face strength ratio of the measured gas side electrode according to X-ray diffraction is 0.7≦{I(200)/I(111)} or 0.6≦{I(220)/I(111)}.
摘要:
A gas sensor is equipped with a built-in ceramic heater. The gas sensor detects the concentration of a predetermined gas component contained in the exhaust gas. The ceramic heater has a heater base member made of ceramic, a heating element formed in the inside of the heater base material, and a pair of external electrode pads that is electrically connected to the output terminals for the outer leads. The external electrode pads, the heating element, and the heater leads are made of base metal. The outer surface of each external electrode pad is covered only with a dense protective film made of noble metal such as gold (Au), silver (Ag), platinum (Pt), rhodium (Rh), and palladium (Pd).
摘要:
A laminated gas sensor includes a solid electrolyte layer, a measurement gas chamber, a reference gas chamber, a measurement gas chamber formation layer, and a reference gas chamber formation layer. The measurement gas chamber formation layer has an opposite pair of inner side surfaces that extend in a longitudinal direction of the solid electrolyte layer and face each other in a lateral direction of the solid electrolyte layer through the measurement gas chamber. The reference gas chamber formation layer has an opposite pair of inner side surfaces that extend in the longitudinal direction and face each other in the lateral direction through the reference gas chamber. Further, at least one of the inner side surfaces of the measurement gas chamber formation layer is located more inside the laminated gas sensor than a corresponding one of the inner side surfaces of the reference gas chamber formation layer in the lateral direction.
摘要:
An improved structure of a gas sensor is provided which is designed to establish a desired degree of gas/liquid tight sealing between a sensor element and a housing. The gas sensor includes a powder seal fitted in a chamber defined between the sensor element and the housing. The dimensions of the powder seal and the chamber are selected to enhance gas/liquid tight properties of the powder seal.
摘要:
A second protective layer is a ceramic porous protective layer comprising coarse particles and fine particles structurally arranged in such a manner that interparticle cavities formed between the coarse particles are filled with the fine particles. At least either of the coarse particles and the fine particles contain at least one selected from the group consisting of &ggr;-Al2O3, &thgr;-Al2O3, &dgr;-Al2O3 and solid solution having the same crystal structure as those of &ggr;-Al2O3, &thgr;-Al2O3, &dgr;-Al2O3.
摘要翻译:第二保护层是包括粗颗粒和细颗粒的陶瓷多孔保护层,其结构地布置成使得在粗颗粒之间形成的颗粒间隙被细颗粒填充。 粗颗粒和细颗粒中的至少任一种含有选自γ-Al 2 O 3,θ-Al 2 O 3,δ-Al 2 O 3和与γ-Al 2 O 3,θ-Al 2 O 3具有相同晶体结构的固溶体中的至少一种 ,Δ-Al2O3
摘要:
A solid electrolytic body has an inside space serving as a reference gas chamber. A sensing electrode and a reference electrode are formed on the surface of the solid electrolytic body. A heater is disposed in the reference gas chamber. A contact portion comprises a region where the heater is brought into contact with the inner surface of the solid electrolytic body and an opposing region on the outer surface of the solid electrolytic body. The sensing electrode includes at least part of the contact portion. A gas receiving surface region, exposed to the measuring gas, extends from an element tip to a position spaced by a distance L away from the element tip. At least part of the contact portion is located in a region extending from the element tip to a position spaced by a distance 0.4L away from the element tip. The sensing electrode is entirely located in a region extending from the element tip to a position spaced by a distance 0.8L away from the element tip.