摘要:
A magnetic refrigerating device includes: a magnetic refrigerating unit including a magnetic material “A” exhibiting a magneto-caloric effect that the temperature of the material “A” is increased by the application of a magnetic field and the temperature of the material “A” is decreased by the removal of a magnetic field, a magnetic material “B” exhibiting a magneto-caloric effect that the temperature of the material “B” is decreased by the application of a magnetic field and the temperature of the material “B” is increased by the removal of a magnetic field, a heat conductive material “a” exhibiting higher heat conductivity under the application of a magnetic field and lower heat conductivity under the removal of a magnetic field, and a heat conductive material “b” exhibiting lower heat conductivity under the application of a magnetic field and higher heat conductivity under the removal of a magnetic field, wherein the magnetic refrigerating unit is configured so as to include at least one layered structure denoted by “AaBb” or “AbBa”; and a magnetic field-applying means to apply a magnetic field to the magnetic refrigerating unit.
摘要:
A magnetic refrigerating device includes: at least one set of double-structured Halbach type magnet including a ring-shaped inner Halbach type magnet and a ring-shaped outer Halbach type magnet which are coaxially arranged one another so that a magnetic field generated by the inner Halbach type magnet is superimposed with a magnetic field generated by the outer Halbach type magnet; a magnetic refrigerant or a magnetic refrigeration working chamber including the magnetic refrigerant therein disposed in a bore space of the inner Halbach type magnet; and a rotating mechanism to rotate the outer Halbach type magnet while the inner Halbach type magnet is stationed.
摘要:
In a magnetic refrigerator, a permanent magnet unit shaped like a hub is so rotated as to face an annular magnetic unit having magnetic blocks arranged in a circumferential direction. The permanent magnet unit is also arranged to be concentric with a magnetic unit and has an inner and outer diameters substantially equal to those of the magnetic unit. Each of the magnetic blocks has positive and negative magnetic segments alternately arranged with predetermined gaps. As the permanent magnet unit rotates, heat conducting members are inserted into and removed from the gaps between the magnetic segments of the magnetic block. This allows heat generated from the magnetic segments to conduct in one direction.
摘要:
In a magnetic refrigerator, a permanent magnet unit shaped like a hub is so rotated as to face an annular magnetic unit having magnetic blocks arranged in a circumferential direction. The permanent magnet unit is also arranged to be concentric with a magnetic unit and has an inner and outer diameters substantially equal to those of the magnetic unit. Each of the magnetic blocks has positive and negative magnetic segments alternately arranged with predetermined gaps. As the permanent magnet unit rotates, heat conducting members are inserted into and removed from the gaps between the magnetic segments of the magnetic block. This allows heat generated from the magnetic segments to conduct in one direction.
摘要:
A magnetic refrigerating device includes: a magnetic refrigerating unit including a magnetic material “A” exhibiting a magneto-caloric effect that the temperature of the material “A” is increased by the application of a magnetic field and the temperature of the material “A” is decreased by the removal of a magnetic field, a magnetic material “B” exhibiting a magneto-caloric effect that the temperature of the material “B” is decreased by the application of a magnetic field and the temperature of the material “B” is increased by the removal of a magnetic field, a heat conductive material “a” exhibiting higher heat conductivity under the application of a magnetic field and lower heat conductivity under the removal of a magnetic field, and a heat conductive material “b” exhibiting lower heat conductivity under the application of a magnetic field and higher heat conductivity under the removal of a magnetic field, wherein the magnetic refrigerating unit is configured so as to include at least one layered structure denoted by “AaBb” or “AbBa”; and a magnetic field-applying means to apply a magnetic field to the magnetic refrigerating unit.
摘要:
A compact and highly efficient hybrid magnetic refrigerator includes a hybrid refrigerating apparatus wherein an evaporator of a vapor compression refrigeration cycle and a heat exchanger of a magnetic refrigeration cycle are thermally connected. The magnetic refrigeration cycle is provided with a magnetic refrigeration unit in which a magnetic substance dissipates and absorbs heat according to the increase and decrease of a magnetic field in order to heat and cool a refrigerant circulating in its vicinity. The heated refrigerant is cooled by the evaporator of the vapor compression refrigeration cycle and the cooled refrigerant is supplied to the heat exchanger cooling the outside air.
摘要:
A carriage arm has a movement locus and supports a head that performs either one of recording information to a disk and reproducing information recorded on the disk. A carriage driving mechanism moves the carriage arm in a radial direction of the disk to perform a positioning of the carriage arm. A guide member changes a direction of air flowing on at least one of a peripheral portion of the disk and a neighboring portion of the peripheral portion toward a center portion of the disk. The guide member is provided in a position where the movement locus of the carriage arm is not blocked in an area of either one of the peripheral portion and the neighboring portion.
摘要:
An evaporator includes a hermetically sealed vessel 1A having an inlet 17 and an outlet 16, a refrigerant supply portion 14, in which liquid refrigerant is stored, a heat transfer portion 12, to which the liquid refrigerant stored in the refrigerant supply portion 14 is supplied, heat transfer fins 12A having a heat transfer surface provided in the heat transfer portion 12, a wick 13A provided on the heat transfer surface of the heat transfer fins 12A to transfer the liquid refrigerant supplied to the heat transfer portion 12 towards the outlet 16 by means of capillarity, and a heat radiation fins 15, which is provided on the outer surface of the refrigerant supply portion 14 to prevent the temperature of the refrigerant introduced into the refrigerant supply portion from rising.
摘要:
A battery-powered vacuum cleaner is provided with a battery pack that generates heat and is capable of efficiently cooling the battery pack. The battery pack of the battery-powered vacuum cleaner is cooled by a vacuum cleaner cooling method. The battery-powered vacuum cleaner comprises a battery pack (3) including a plurality of secondary batteries, a battery pack container (2) containing the battery pack, a motor (7) driven for operation by power supplied by the battery pack, a fan (5) driven by the motor to suck air, a dust cup (9) for separating dust from air sucked therein by the fan and storing the dust separated from the sucked air, a housing (1) containing the battery pack container, the motor, the fan and the dust cup, and provided with a first suction opening (30) through which external air is sucked, a first airflow duct (32) for guiding the air sucked in by the fun through the dust cup to the motor, and a second airflow duct (36), for guiding air for cooling the battery pack through the battery pack, joined to the first airflow duct at a junction (34) on the upstream side of the fan.
摘要:
One surface of a base section having an open portion forming an inlet port of a fluid is thermally connected to a target module to be cooled. Pluralities of fins arranged in parallel are mounted on the other surface of a base section in a direction substantially perpendicular to the base section. A fan is arranged to permit the fluid to flow through the clearance between the adjacent fins. A wall section open to the inlet port of the fluid is mounted on the base section. A part of the wall section constitutes a detachable lid section. A partition plate having through-holes formed therein is arranged between the base section and the lid section so as to divide the space between the base section and the lid section into two fluid flowing channels consisting of a main flowing channel and an auxiliary flowing channel.