摘要:
The present invention provides a resin composition including 100 parts by mass of a resin component containing 80 to 99 mass % of a thermoplastic resin (A) and 20 to 1 mass % of a side-chain crystalline polymer (B), and 0.1 to 30 parts by mass of carbon nanotube (C). The composition has a stabilized thermoplastic resin/side-chain crystalline polymer phase structure, is free from laminar peeling, and is excellent in conductive (antistatic) property, solvent resistance, flow characteristics, flame retardancy, impact resistance, molding appearance, etc.
摘要:
The present invention provides a resin composition including 100 parts by mass of a resin component containing to 99 mass % of a thermoplastic resin (A) and 20 to 1 mass % of a side-chain crystalline polymer (B), and 0.1 to 30 parts by mass of carbon nanotube (C). The composition has a stabilized thermoplastic resin/side-chain crystalline polymer phase structure, is free from laminar peeling, and is excellent in conductive (antistatic) property, solvent resistance, flow characteristics, flame retardancy, impact resistance, molding appearance, etc.
摘要:
A crystalline higher α-olefin polymer which is obtained from a C10 or more α-olefin and satisfies either (1) the melting point (Tm) as measured with a differential scanning calorimeter (DSC) is 20 to 100° C. or (2) in an examination of spin-lattice relaxation time (T1) by solid NMR analysis, a single T1 is observed at the temperatures not lower than the melting point; and a process for producing the α-olefin polymer with a specific metallocene catalyst. The crystalline higher α-olefin polymer is excellent in low-temperature characteristics, rigidity, heat resistance, compatibility with lubricating oils, mixability with inorganic fillers, and secondary processability.
摘要翻译:由差示扫描量热仪(DSC)测得的,由C 10〜10以上的α-烯烃得到的满足(1)熔点(Tm)的结晶高级α-烯烃聚合物为20 至(100)℃,或(2)在通过固体NMR分析检查自旋晶格弛豫时间(T 1 N 2)时,在温度下观察到单个T 1 不低于熔点; 以及用特定的茂金属催化剂生产α-烯烃聚合物的方法。 结晶高级α-烯烃聚合物的低温特性,刚性,耐热性,与润滑油的相容性,与无机填料的混合性以及二次加工性优异。
摘要:
An object of the present invention is to provide crystalline high α-olefin copolymers which have excellent compatibility with thermoplastic resins, especially polyolefins, and compatibility with lubricant oils, fuel oils or waxes, excellent miscibility with inorganic fillers and secondary processability, and which have narrow temperature ranges for melting and crystallization, and to provide a process for preparation thereof. The present invention provides a crystalline higher α-olefin copolymer obtained by copolymerizing at least two higher α-olefins having 10 or more carbon atoms or at least one higher α-olefin having 10 or more carbon atoms with at least one other olefin, wherein it satisfies the following (1) to (3): (1): the content of higher α-olefin units is 50 mol % or greater, (2): the melting point (Tm) which is measured, by using a differential scanning calorimeter (DSC), from the melting endothermic curve obtained by maintaining the copolymer at 190° C. for 5 minutes under a nitrogen atmosphere, cooling it to −10° C. at a rate of 5° C./min, maintaining it at −10° C. for 5 minutes, and then elevating its temperature to 190° C. at 10° C./min is in the range of 20 to 100° C., and (3): in the intensity distribution of wide-angle X-ray scattering, a single peak X1 resulting from crystallization of side chains is observed at 15 deg
摘要:
The present invention relates to a heat storage material composition comprising 20 to 100% by weight of a heat storage material, 80 to 0% by weight of crystalline polyolefin (B) and 50 to 0% by weight of an elastomer (C), and the heat storage material described above contains a side chain-crystalline polymer (A), wherein the heat storage material described above comprises preferably a higher α-olefin polymer (a) containing 50 mole % or more of higher α-olefin having 10 or more carbon atoms and a petroleum wax (b) in which a melting point (Tm) is higher by 10° C. or more than that of the polymer (a). Provided is a heat storage material composition which has less bleeding and stickiness and is excellent in stability at high temperature and which can meet a change in temperature such as a difference in room temperature when applied to a material for floor heating and can avoid a heating state deviated to high temperature or low temperature.
摘要:
The present invention provides a crystalline higher α-olefin copolymer obtained by copolymerizing at least two higher α-olefins having 10 or more carbon atoms or at least one higher α-olefin having 10 or more carbon atoms with at least one other olefin, wherein it satisfies certain conditions.
摘要:
The present invention provides a crystalline higher α-olefin copolymer obtained by copolymerizing at least two higher α-olefins having 10 or more carbon atoms or at least one higher α-olefin having 10 or more carbon atoms with at least one other olefin, wherein it satisfies certain conditions.
摘要:
A crystalline higher (x-olefin polymer which is obtained from a C10 or more α-olefin and satisfies either (1) the melting point (Tm) as measured with a differential scanning calorimeter (DSC) is 20 to 100° C. or (2) in an examination of spin-lattice relaxation time (T1) by solid NMR analysis, a single T1 is observed at the temperatures not lower than the melting point; and a process for producing the α-olefin polymer with a specific metallocene catalyst. The crystalline higher α-olefin polymer is excellent in low-temperature characteristics, rigidity, heat resistance, compatibility with lubricating oils, mixability with inorganic fillers, and secondary processability.
摘要翻译:由差示扫描量热仪(DSC)测得的结晶高(X-α-烯烃聚合物,由C 10以上的α-烯烃得到并满足(1)熔点(Tm) 20至100℃或(2)通过固体NMR分析检查自旋晶格弛豫时间(T 1 N 2)时,在 不低于熔点的温度;以及用特定的茂金属催化剂生产α-烯烃聚合物的方法,结晶高级α-烯烃聚合物的低温特性,刚性,耐热性,与润滑油的相容性,混合性 无机填料,二次加工性能。
摘要:
An object of the present invention is to provide crystalline high α-olefin copolymers which have excellent compatibility with thermoplastic resins, especially polyolefins, and compatibility with lubricant oils, fuel oils or waxes, excellent miscibility with inorganic fillers and secondary processability, and which have narrow temperature ranges for melting and crystallization, and to provide a process for preparation thereof. The present invention provides a crystalline higher α-olefin copolymer obtained by copolymerizing at least two higher α-olefins having 10 or more carbon atoms or at least one higher α-olefin having 10 or more carbon atoms with at least one other olefin, wherein it satisfies the following (1) to (3): (1): the content of higher α-olefin units is 50 mol % or greater, (2): the melting point (Tm) which is measured, by using a differential scanning calorimeter (DSC), from the melting endothermic curve obtained by maintaining the copolymer at 190° C. for 5 minutes under a nitrogen atmosphere, cooling it to −10° C. at a rate of 5° C./min, maintaining it at −10° C. for 5 minutes, and then elevating its temperature to 190° C. at 10° C./min is in the range of 20 to 100° C., and (3): in the intensity distribution of wide-angle X-ray scattering, a single peak X1 resulting from crystallization of side chains is observed at 15 deg
摘要:
The present invention relates to a heat storage material composition comprising 20 to 100% by weight of a heat storage material, 80 to 0% by weight of crystalline polyolefin (B) and 50 to 0% by weight of an elastomer (C), and the heat storage material described above contains a side chain-crystalline polymer (A), wherein the heat storage material described above comprises preferably a higher α-olefin polymer (a) containing 50 mole % or more of higher α-olefin having 10 or more carbon atoms and a petroleum wax (b) in which a melting point (Tm) is higher by 10° C. or more than that of the polymer (a). Provided is a heat storage material composition which has less bleeding and stickiness and is excellent in stability at high temperature and which can meet a change in temperature such as a difference in room temperature when applied to a material for floor heating and can avoid a heating state deviated to high temperature or low temperature.