摘要:
The oxygen concentration detector of the present invention includes a sensor element having a solid electrolyte and having an external electrode and an internal electrode provided on the external surface and the internal surface, respectively, and a heater provided adjacent to the internal surface of the sensor element, in which a high-emissivity layer consisting of a material having a high emissivity is provided on the internal surface of the sensor element and/or the surface of the heater.
摘要:
An air-fuel ratio sensing element comprises a cup-shaped solid electrolyte with one end opened and the other end closed, an external electrode provided on an outer wall surface of the solid electrolyte so as to be exposed to measured gas, and an internal electrode provided on an inner wall surface of the solid electrolyte in a confronting relationship to the external electrode. A first insulating layer, made of a gas-permeable and nonconductive porous material, is provided on the external electrode at least in a region used for detecting of an air-fuel ratio. A second insulating layer is provided outside the first insulating layer and, a heater layer as provided between the first insulating layer and the second insulating layer.
摘要:
An oxygen sensor element includes a solid electrolyte having cavities on a surface thereof and an electrode formed on the surface of the solid electrolyte. In a method of producing the oxygen sensor element, a solution containing a noble metal compound for nucleus formation is first applied to an electrode forming portion of the solid electrolyte to form a coating film. Then, the coating film is heat-treated to form a nucleus forming portion where noble metal nuclei are deposited. Subsequently, metal plating is applied to the nucleus forming portion to form a plating film deeply entering the cavities. Thereafter, the plating film is burned to form the electrode deeply entering the cavities.
摘要:
An oxygen sensor element includes a solid electrolyte having cavities on a surface thereof and an electrode formed on the surface of the solid electrolyte. In a method of producing the oxygen sensor element, a solution containing a noble metal compound for nucleus formation is first applied to an electrode forming portion of the solid electrolyte to form a coating film. Then, the coating film is heat-treated to form a nucleus forming portion where noble metal nuclei are deposited. Subsequently, metal plating is applied to the nucleus forming portion to form a plating film deeply entering the cavities. Thereafter, the plating film is burned to form the electrode deeply entering the cavities.
摘要:
An air-fuel ratio sensor of a limit current type is used for an air-fuel ratio feedback control. When the air-fuel ratio sensor is in a semi-activated state, the air-fuel ratio sensor is driven into an electromotive force generating mode by a current externally applied thereto thereby to shift an electromotive force changing point so that an air-fuel ratio at which the electromotive force changes stepwisely is shifted from the stoichiometric ratio point to a lean zone. When the air-fuel ratio sensor is in a completely activated state, the air-fuel ratio sensor is applied with a voltage to produce a limit current varying with an air-fuel ratio so that a feedback control is performed based on the advanced control theory by using a linear current output characteristics.
摘要:
A method for manufacturing an oxygen sensor unit of the type which includes at least a shaped body of a solid electrolyte, an inner electrode provided on an inside surface of the shaped body and exposed to a reference gas, an outer electrode provided on an outside surface of the shaped body and exposed to a gas to be measured, and a porous protective layer covering the outer electrode and a portion of the shaped body adjoining to said outer electrode wherein the solid electrolyte is made of a mixture of zirconia and a stabilizer therefor and is constituted of a sintered product of partially stabilized zirconia. The method is characterized in that the partially stabilized, sintered zirconia is obtained according to a high temperature sintering process which includes at least the step of sintering the mixture at a temperature of 1200° C. or over for a duration of 2 to 6 hours wherein a value obtained by integrating a variation in the sintering temperature with the duration in the sintering process is in the range of 300 to 1500° C.·hour.
摘要:
According to the present invention, an oxygen sensor element includes a solid electrolyte having a side surface at one side thereof, the side surface being contactable with a gas to be measured, a skeletal electrode provided on the side surface and having a plurality of pore portions, each of the pore portions passing through the skeletal electrode up to the solid electrolyte, and a reactive electrode made of a porous film and provided in each of the pore portions, a thickness of the porous film being smaller than that of said skeletal electrode. An area percentage (SH/SZ) which is a ratio of a total area (SH) of the reactive electrode to a total area (SZ) of the skeletal electrode and the reactive electrode is in a range from 10 to 50%, an average area (SA) of the pore portions is 100 .mu.m.sup.2 or less, a film thickness of the skeletal electrode is in a range from 1.5 to 4 .mu.m, and the film thickness of the reactive electrode is in a range from 0.6 to 1.5 .mu.m. The oxygen sensor element is superior in the heat resistance characteristics and the response characteristics.
摘要:
An oxygen gas concentration-sensing device comprises a solid electrolyte body which is prepared from an oxygen ion-permeable metal oxide and whose first surface is exposed to the gas to be sensed and the second surface is exposed to a reference gas. First and second electrodes are respectively pressed against the first and second surface of the solid electrolyte body. The first electrode exposed to the gas is covered with a porous gas diffusion-resisting layer. This gas diffusion-resisting layer is chosen to have an average pore-size ranging from 300 .ANG. to 400 .ANG..
摘要:
A limiting current type oxygen analyzer designed for detecting oxygen concentration comprising a solid electrolyte element made from an oxygen ion conductive metal oxide and a pair of porous film electrodes provided on the inner and outer sides of said element respectively, at least one side electrodes being coated with a gas-diffusive resistive layer made from a porous insulating metal oxide, wherein the oxygen ions in the gas to which said element is exposed are caused to diffuse in the inside of said electrolyte element by applying a given voltage across said both electrodes and the limiting current corresponding to the concentration of said diffused oxygen ions is measured to determine the oxygen concentration in the gas to be analyzed, further characterized in that said gas-diffusive resistive layer is composed of a three-layer structure consisting of the first, second and third layers counted from the electrode side, said first layer having porosity of 11-15%, the second layer 6-8% and the third layer 15-20%.
摘要:
An oxygen sensor element for detecting an oxygen concentration, the oxygen sensor includes a solid electrolyte; a porous film covering the solid electrolyte at the gas-measuring side; and a reaction electrode provided on the porous film; wherein the porous film includes ceramic particles and metallic particles, and the metallic particles are bonded with the reaction electrode by a metallic bond. In this way, the porous film includes the ceramic particles and the metallic particles to form an irregular surface, and the reaction electrode is adhered to the irregular surface of the porous film in such a manner that the electrode bites into the surface of the porous film. The metallic particles in the irregular surface of the porous film are tightly bonded to the reaction electrode by the metallic bond.