摘要:
The present invention relates to an automatic dispersion compensating optical link system. Carrier suppressed RZ encoded optical signals generated using carrier suppressing means and binary NRZ code or partial response code, or carrier suppressed clock signals generated using carrier suppressing means and clock signals are transmitted on an optical transmission line. Two bands of the carrier suppressed RZ encoded optical signals or carrier suppressed clock signals transmitted on the optical transmission line are each divided into bands and are received. Phase information of the respective basebands is extracted from the binary NRZ code components or partial response code components or clock signals in each band and the relative phase difference thereof is detected. The chromatic dispersion value of the optical transmission line is then calculated from the relative phase difference.
摘要:
The present invention suppresses to a minimum the degradation of the transmission quality caused by chromatic dispersion characteristic of an optical transmission medium, and the interplay between the chromatic dispersion and non-linear optical effects in dense WDM transport systems. A baseband input data signal is pre-coded in advance by a pre-coding unit, phase modulation is carried out using a pre-coded signal by the optical phase modulating unit, and the phase modulated optical signal is converted to an RZ intensity modulated signal by the optical filter unit that performs phase-shift-keying to amplitude-shift-keying conversion. For example, an optical phase modulating unit generates an encoded DPSK phase modulated signal using a differential phase shirt keying (DPSK) format, and a phase modulated signal is converted to an RZ intensity modulated signal by the optical filter unit disposed downstream of the optical phase modulating unit.
摘要:
An optical transmission system is provided in which the optimum operating point of a Mach-Zehnder interferometer, matched to the optical frequency of the light source on the transmitting side, can be set. The optical receiver (2) has an infinitesimal-modulated signal component detection circuit (222), which uses the signal train output from a balanced detection circuit (221) to detect the infinitesimal-modulated signal component applied to the phase adjustment terminal (201) of an MZI (200) by an infinitesimal-modulated signal oscillation circuit (224); a synchronous detection circuit (223), which synchronously detects the infinitesimal-modulated signals output from the infinitesimal-modulated signal component detection circuit (222) and infinitesimal-modulated signal oscillation circuit (224) and detects the error signal component arising from the shift between the optical signal carrier frequency and the optical frequency characteristic of the MZI (200); and a controller (207), which outputs a control signal to adjust the phase difference between two split optical signals output from the MZI (200) so as to correct the shift amount.
摘要:
An optical transmission system is provided in which the optimum operating point of a Mach-Zehnder interferometer, matched to the optical frequency of the light source on the transmitting side, can be set. The optical receiver (2) has an infinitesimal-modulated signal component detection circuit (222), which uses the signal train output from a balanced detection circuit (221) to detect the infinitesimal-modulated signal component applied to the phase adjustment terminal (201) of an MZI (200) by an infinitesimal-modulated signal oscillation circuit (224); a synchronous detection circuit (223), which synchronously detects the infinitesimal-modulated signals output from the infinitesimal-modulated signal component detection circuit (222) and infinitesimal-modulated signal oscillation circuit (224) and detects the error signal component arising from the shift between the optical signal carrier frequency and the optical frequency characteristic of the MZI (200); and a controller (207), which outputs a control signal to adjust the phase difference between two split optical signals output from the MZI (200) so as to correct the shift amount.
摘要:
An optical transmission system is provided in which the optimum operating point of a Mach-Zehnder interferometer, matched to the optical frequency of the light source on the transmitting side, can be set. The optical receiver (2) has an infinitesimal-modulated signal component detection circuit (222), which uses the signal train output from a balanced detection circuit (221) to detect the infinitesimal-modulated signal component applied to the phase adjustment terminal (201) of an MZI (200) by an infinitesimal-modulated signal oscillation circuit (224); a synchronous detection circuit (223), which synchronously detects the infinitesimal-modulated signals output from the infinitesimal-modulated signal component detection circuit (222) and infinitesimal-modulated signal oscillation circuit (224) and detects the error signal component arising from the shift between the optical signal carrier frequency and the optical frequency characteristic of the MZI (200); and a controller (207), which outputs a control signal to adjust the phase difference between two split optical signals output from the MZI (200) so as to correct the shift amount.
摘要:
This digital transmission system is provided with a transmitting apparatus that transmits digital data signals and a receiving apparatus that receives the digital data signals transmitted over a transmission path, compares the signals with a predetermined threshold value, and performs decision reproduction. The receiving apparatus is formed by: decision circuits that receive the input of reception signals, discriminate between the respective reception signals using a plurality of threshold values, and output decision results; and a selection circuit that, based on the decision results output from the decision circuit, selects one decision result from one threshold value from among the decision results from each of the plurality of threshold values, and outputs the selected decision result. As a result, the receiving apparatus is able to individually select which decision result to use from which threshold value.
摘要:
The present invention proposes a method whereby during a specified/specifiable observation period (Ttotal) , the polarization states of optical transmission system and/or the optical signals transmitted by the optical transmission system are changed by applying a targeted intervention in at least one position of the transmission line, and at a second position which is interposed at least one place downstream from the first position of the optical transmission line, a specified/specifiable signal characteristic (BER) is qualitatively measured and checked for adherence to a specified/specifiable threshold condition (BERth) and the PMD-induced outage probability of the optical transmission system is calculated on the basis of the ratio between the length of that share of the time (Tout), during which the measured signal characteristic fails to meet the threshold condition (BERth), to the length of the observation period (Ttotal).
摘要:
An optical transmitter for realizing a high tolerance with respect to the group velocity dispersion of the optical fibers, a small receiver sensitivity degradation, and an improved stability that is hardly affected by the group velocity dispersion even in the case of network scale expansion, is constructed by a light source section for generating optical clock pulses synchronized with a signal bit rate while maintaining a duty ratio of the optical clock pulses constant, which is capable of variably setting the duty ratio, and an encoding section for encoding the optical clock pulses by using electric signals synchronized with the optical clock pulses while setting a relative optical phase difference between the optical clock pulses in adjacent time-slots to be an odd integer multiple of &pgr;.
摘要:
A system which improves wavelength tolerance, compensates dispersion in a simple way, reduces limitation of the fiber input power is disclosed. The operation includes receiving a clock signal from a system clock source; modulating a single mode optical signal based on the clock signal and generating an optical pulse signal having two longitudinal modes, the frequency interval thereof being n×B, n being a natural number and B being a transmission speed; generating a partial response signal by converting a binary NRZ signal from a digital signal source in synchronism with the system clock source; and modulating the optical pulse signal based on the partial response signal, and outputting a binary RZ modulated signal. The binary RZ modulated signal is input into a receiver, where two partial response components in the optical spectra of the input signal are divided, and one or both of the components are received.
摘要:
A nitride semiconductor ultraviolet light-emitting element is formed by laminating at least an n-type cladding layer configured of an n-type AlGaN semiconductor layer, an active layer including an AlGaN semiconductor layer having band gap energy of 3.4 eV or larger, and a p-type cladding layer configured of a p-type AlGaN semiconductor layer. A p-type contact layer configured of a p-type AlGaN semiconductor layer that absorbs ultraviolet light emitted from the active layer is formed on the p-type cladding layer. The p-type contact layer has an opening portion penetrating through to a surface of the p-type cladding layer. A p-electrode metal layer that makes Ohmic contact or non-rectifying contact with the p-type contact layer is formed on the p-type contact layer so as not to completely block the opening portion. A reflective metal layer for reflecting the ultraviolet light is formed at least on the opening portion and covers the surface of the p-type cladding layer that is exposed through the opening portion either directly or through a transparent insulating layer that allows the ultraviolet light to pass therethrough.