摘要:
An injection molding machine estimates a check valve wear amount, making it possible to predict a check valve use limit. At start of injection, the check valve is at a position advanced a stroke S0 with respect to a screw position (a position of a check seat that contacts the check valve and closes a resin flow channel). As the screw advances, the check valve retreats and closes when the screw moves a distance X0. When the check valve is worn ΔS (S1=S0+ΔS), it closes when the screw moves X1. Since the check valve stroke and the distance the screw moves until the check valve closes are proportional, S0/X0=S1/X1=a. Therefore, ΔS=aX1−S0, and the wear amount ΔS can be obtained by detecting the check valve closing position X1 and using this position X1 and the known stroke S0. The closing position is detected from the peak value of rotational force acting on the screw. Once the wear amount is obtained, the check valve use limit can be predicted from an allowable value of wear.
摘要:
A controller for an injection molding machine capable of reducing an extension of a cycle time in a screw retreat process after the end of measurement, obtaining a more accurate and uniform measured resin amount, and determining measurement conditions in a short period of time. After the measurement is finished, the screw is stopped from rotating and retreated at a first speed V1. The screw is reversely rotated at a predetermined speed Rv in a set zone. As this is done, the screw is retreated at a second speed V2 lower than the first speed V1. After the reverse rotation zone is terminated, the screw is stopped from rotating and retreated at a third speed V3 to a set retreat stop position. By doing this, the cycle time can be made shorter than in the case where the retreat and reverse rotation of the screw are performed separately. Since the retreating speed of the screw is low while the screw is being reversely rotated, a sudden pressure change can be suppressed, so that precise measurement can be made. Since conditions for the reverse rotation and retreat of the screw can be regulated independently, they can be adjusted to optimum conditions in a short period of time.
摘要:
A controller for an injection molding machine capable of reducing an extension of a cycle time in a screw retreat process after the end of measurement, obtaining a more accurate and uniform measured resin amount, and determining measurement conditions in a short period of time. After the measurement is finished, the screw is stopped from rotating and retreated at a first speed V1. The screw is reversely rotated at a predetermined speed Rv in a set zone. As this is done, the screw is retreated at a second speed V2 lower than the first speed V1. After the reverse rotation zone is terminated, the screw is stopped from rotating and retreated at a third speed V3 to a set retreat stop position. By doing this, the cycle time can be made shorter than in the case where the retreat and reverse rotation of the screw are performed separately. Since the retreating speed of the screw is low while the screw is being reversely rotated, a sudden pressure change can be suppressed, so that precise measurement can be made. Since conditions for the reverse rotation and retreat of the screw can be regulated independently, they can be adjusted to optimum conditions in a short period of time.
摘要:
A notched region in which the outer periphery of a screw flight is cut out is provided in a molding material feed screw. A wedge-shaped portion is formed by both a front wall surface of the screw flight and a wall surface of the boundary where the outer periphery of the screw flight is cut out. As a result of rotation of the molding material feed screw, since the wedge-shaped portion advances while pushing aside resin pellets located in the front thereof in two lateral directions of the front wall surface of the screw flight and the wall surface of the boundary where the outer diameter of the screw flight is cut out, entrapment of the resin pellets between the edge of a material supply port of a molding material supply device and the outer periphery of the screw flight is avoided as much as possible.
摘要:
The invention provides an injection molding capable of adjusting a detection level with a simple structure and detecting a deposit level of the resin pellets near a plasticizing screw. A cooling jacket is mounted so that a resin supplying hole of the cooling jacket communicates with a resin supplying hole of a heating cylinder. A sensor head mounted on a sensor mounting plate is inserted into the resin supplying hole through a sensor insertion port provided on a hopper plate and a resin inlet and detects the deposit level of the resin pellets deposited in the resin supplying hole. Changing the extent of insertion of the sensor head enables the resin pellets deposit detection level to be changed, and further, enables the deposit level near the outer periphery of the screw to be detected. Setting the sensor detection direction perpendicular to the resin deposit direction enables dirtying of the sensor detection surface by the resin pellets to be reduced, thus enabling erroneous detection readings to be reduced.
摘要:
Screw rotation speeds and screw rotating torques are measured at predetermined time intervals during metering and substituted into a previously-assumed function to determine a maximum screw rotating torque at each screw rotation speed. An allowable upper limit of screw rotating torque is set for each screw rotation speed on the basis of the determined maximum screw rotating torque. If a screw rotating torque exceeding the allowable upper limit is detected during metering after the allowable upper limit is set, the screw rotation is stopped or changed.
摘要:
A mold is mounted with a locating ring mated into a hole in a stationary platen. A distance measuring unit is disposed to the side of the injection nozzle. The distance A between the sprue hole and the outer circumference of the locating ring and the distance B between the distance measuring unit and the outer circumference of the locating ring are both known. The distance C between the central axis of the nozzle hole and the side of the injection nozzle is also known. If the distance D to the side of the injection nozzle is measured by means of the distance measuring unit, the displacement between the central axis of the sprue hole and the central axis of the nozzle hole is obtained by calculating {(A+B)−(C+D)}. The injection nozzle is centered by being moved manually or automatically by the amount corresponding to the displacement.
摘要:
The invention provides an injection molding capable of adjusting a detection level with a simple structure and detecting a deposit level of the resin pellets near a plasticizing screw. A cooling jacket is mounted so that a resin supplying hole of the cooling jacket communicates with a resin supplying hole of a heating cylinder. A sensor head mounted on a sensor mounting plate is inserted into the resin supplying hole through a sensor insertion port provided on a hopper plate and a resin inlet and detects the deposit level of the resin pellets deposited in the resin supplying hole. Changing the extent of insertion of the sensor head enables the resin pellets deposit detection level to be changed, and further, enables the deposit level near the outer periphery of the screw to be detected. Setting the sensor detection direction perpendicular to the resin deposit direction enables dirtying of the sensor detection surface by the resin pellets to be reduced, thus enabling erroneous detection readings to be reduced.
摘要:
When a metering process is started, a screw rotates at a preset rotating speed, thereby carrying out back pressure control to keep the pressure of a resin at a preset pressure, and retreats. When the screw is located near a preset metering completion position, the control mode is switched to positioning control for the preset metering completion position, and a screw rotation stop command is outputted. The screw overruns for some distance before its rotation stops after it retreats and stops at the preset metering completion position. A resin quantity for the overrun is corrected to obtain a preset metered resin quantity by reversely rotating the screw by a rotational amount corresponding to the overrun.
摘要:
When a metering process is started, a screw rotates at a preset rotating speed, thereby carrying out back pressure control to keep the pressure of a resin at a preset pressure, and retreats. When the screw is located near a preset metering completion position, the control mode is switched to positioning control for the preset metering completion position, and a screw rotation stop command is outputted. The screw overruns for some distance before its rotation stops after it retreats and stops at the preset metering completion position. A resin quantity for the overrun is corrected to obtain a preset metered resin quantity by reversely rotating the screw by a rotational amount corresponding to the overrun.