摘要:
A notched region in which the outer periphery of a screw flight is cut out is provided in a molding material feed screw. A wedge-shaped portion is formed by both a front wall surface of the screw flight and a wall surface of the boundary where the outer periphery of the screw flight is cut out. As a result of rotation of the molding material feed screw, since the wedge-shaped portion advances while pushing aside resin pellets located in the front thereof in two lateral directions of the front wall surface of the screw flight and the wall surface of the boundary where the outer diameter of the screw flight is cut out, entrapment of the resin pellets between the edge of a material supply port of a molding material supply device and the outer periphery of the screw flight is avoided as much as possible.
摘要:
A controller for an injection molding machine capable of reducing an extension of a cycle time in a screw retreat process after the end of measurement, obtaining a more accurate and uniform measured resin amount, and determining measurement conditions in a short period of time. After the measurement is finished, the screw is stopped from rotating and retreated at a first speed V1. The screw is reversely rotated at a predetermined speed Rv in a set zone. As this is done, the screw is retreated at a second speed V2 lower than the first speed V1. After the reverse rotation zone is terminated, the screw is stopped from rotating and retreated at a third speed V3 to a set retreat stop position. By doing this, the cycle time can be made shorter than in the case where the retreat and reverse rotation of the screw are performed separately. Since the retreating speed of the screw is low while the screw is being reversely rotated, a sudden pressure change can be suppressed, so that precise measurement can be made. Since conditions for the reverse rotation and retreat of the screw can be regulated independently, they can be adjusted to optimum conditions in a short period of time.
摘要:
A controller for an injection molding machine capable of reducing an extension of a cycle time in a screw retreat process after the end of measurement, obtaining a more accurate and uniform measured resin amount, and determining measurement conditions in a short period of time. After the measurement is finished, the screw is stopped from rotating and retreated at a first speed V1. The screw is reversely rotated at a predetermined speed Rv in a set zone. As this is done, the screw is retreated at a second speed V2 lower than the first speed V1. After the reverse rotation zone is terminated, the screw is stopped from rotating and retreated at a third speed V3 to a set retreat stop position. By doing this, the cycle time can be made shorter than in the case where the retreat and reverse rotation of the screw are performed separately. Since the retreating speed of the screw is low while the screw is being reversely rotated, a sudden pressure change can be suppressed, so that precise measurement can be made. Since conditions for the reverse rotation and retreat of the screw can be regulated independently, they can be adjusted to optimum conditions in a short period of time.
摘要:
An injection molding machine estimates a check valve wear amount, making it possible to predict a check valve use limit. At start of injection, the check valve is at a position advanced a stroke S0 with respect to a screw position (a position of a check seat that contacts the check valve and closes a resin flow channel). As the screw advances, the check valve retreats and closes when the screw moves a distance X0. When the check valve is worn ΔS (S1=S0+ΔS), it closes when the screw moves X1. Since the check valve stroke and the distance the screw moves until the check valve closes are proportional, S0/X0=S1/X1=a. Therefore, ΔS=aX1−S0, and the wear amount ΔS can be obtained by detecting the check valve closing position X1 and using this position X1 and the known stroke S0. The closing position is detected from the peak value of rotational force acting on the screw. Once the wear amount is obtained, the check valve use limit can be predicted from an allowable value of wear.
摘要:
When the screw moves forward, resin backflow occurs. The backflow acts on the screw, applying torque to the screw. During forward movement of the screw, screw torque is produced as shown in FIG. 3A if the check ring is not worn, or as shown in FIG. 3B if the check ring is worn, because wear increases the backflow and delays the closure of the check ring. The magnitude of the peak screw torque and the associated time and screw position vary depending on the presence or absence of wear, so wear of the check ring is estimated from variations in these physical quantities. The state of wear of the check ring, screw head, check seat, and other parts inside the barrel can be estimated.
摘要:
When the screw moves forward, resin backflow occurs. The backflow acts on the screw, applying torque to the screw. During forward movement of the screw, screw torque is produced as shown in FIG. 3A if the check ring is not worn, or as shown in FIG. 3B if the check ring is worn, because wear increases the backflow and delays the closure of the check ring. The magnitude of the peak screw torque and the associated time and screw position vary depending on the presence or absence of wear, so wear of the check ring is estimated from variations in these physical quantities. The state of wear of the check ring, screw head, check seat, and other parts inside the barrel can be estimated
摘要:
Torques and resin pressures applied to a screw are detected during the forward movement of the screw and coefficients of correlation between the detected torques and resin pressures are calculated. When the check ring is open, the flight of the screw receives resin pressure, and the screw torque increases proportionally to the resin pressure due to resin backflow, so the coefficients of correlation between the screw torques and the resin pressures are higher than a reference value. When the check ring closes, the flight of the screw no longer receive resin pressure, so the screw torque decreases and the coefficients of correlation become lower than the reference value. The check ring is determined to be closed when the coefficients of correlation become lower than the reference value.
摘要:
When a resin passage of a check ring is opened, resin backflow occurs during time when an injection screw is moved forward, and a reverse rotational force is applied to the screw by resin backflow. On the other hand, when the resin passage is closed, there is no resin backflow and the reverse rotational force applied to the screw is greatly reduced. Consequently, after completion of metering process and before injection process, the screw is moved forward after the screw has been rotated in reverse a predetermined amount to prevent resin backflow. At this time, a maximum value of the reverse rotational force applied to the screw is detected. Until the detected maximum reverse rotational force reaches a reference value or less, the reverse rotation amount is increased sequentially and respective molding cycles are carried out. When the detected maximum reverse rotational force reaches the reference value or less (passage closure), the reverse rotation amount at this time is set as the reverse rotation amount for the reverse rotation process. By means of this operation, an optimal reverse rotation amount can be adjusted automatically.
摘要:
When a screw equipped with a check ring is moved forward, torque acting on the screw is detected, and whether the check ring is closed is determined on the basis of the detected torque. The screw is rotated in reverse when the check ring is determined not to be closed, and the reverse rotation of the screw is stopped when the check ring is determined to be closed. The reverse rotation of the screw is thereby controlled so that the screw is rotated in reverse by an optimal amount for reliably closing the check ring.
摘要:
In an injection molding machine capable of appropriately adjusting a control condition for a reverse rotation of a screw and a method for adjusting the control condition, molding is repeated with an amount of a reverse rotation of the screw performed after completion of metering and before injection to be varied in each molding cycle. In injection, resin flows backward until a check valve becomes closed. A peak value of a rotational force causing reverse rotation of the screw by the back flow of resin and other physical amounts are detected as indices of resin back-flow amount. An evaluation value of the control condition is obtained by inputting the indices of resin back-flow amount, metering time, etc. into an evaluation function. The value of screw reverse rotation amount with which the highest evaluation value is obtained is set for the screw reverse rotation.