摘要:
A composite plate-shaped fuel cell component includes two electrically conductive porous plates juxtaposed and in area electrical contact with one another at an interface, and a sealant body accommodated in and completely filling the pores of a sealed region of each of the porous plates that extends to a predetermined distance from the interface into the respective porous plate to form a fluid impermeable barrier between the porous plates and to bond the porous plates to one another at the interface. The sealant body includes at least one layer of a fluoroelastomer sealant that fills all of the pores of at least one of the sealed regions.
摘要:
The graphitized composite article of the present invention is formed by embedding carbon fiber felt in a matrix of a carbon filler; a thermosetting resin and a solvent; curing the composite article; then, carbonizing and graphitizing the cured composite article to form the graphitized composite article for use as a separator plate capable of substantially inhibiting mixing of hydrogen and oxygen and/or the loss of electrolyte within a fuel cell stack. The graphitized composite article may be a graphitized laminate.
摘要:
The graphitized composite article of the present invention is formed by embedding carbon fiber felt in a matrix of a carbon filler; a thermosetting resin and a solvent; curing the composite article; then, carbonizing and graphitizing the cured composite article to form the graphitized composite article for use as a separator plate capable of substantially inhibiting mixing of hydrogen and oxygen and/or the loss of electrolyte within a fuel cell stack. The graphitized composite article may be a graphitized laminate.
摘要:
A fuel cell power plant system includes the ability to operate an enthalpy recovery device even under cold conditions. A bypass arrangement allows for selectively bypassing one or more portions of the enthalpy recovery device under selected conditions. In one example, the enthalpy recovery device is completely bypassed under selected temperature conditions to allow the device to freeze and then later to be used under more favorable temperature conditions. In another example, the enthalpy recovery device is selectively bypassed during a system startup operation. One example includes a heater associated with the enthalpy recovery device. Another example includes preheating oxidant supplied to one portion of the enthalpy recovery device.
摘要:
Water flow field inlet manifolds (33, 37) are disposed at the fuel cell stack (11) base. Water flow field outlet manifolds (34, 38) are located at the fuel cell stack top. Outlet and inlet manifolds are interconnected (41-43, 47, 49, 50) so gas bubbles leaking through the porous water transport plate cause flow by natural convection, with no mechanical water pump. Variation in water level within a standpipe (58) controls (56, 60, 62, 63) the temperature or flow of coolant. In another embodiment, the water is not circulated, but gas and excess water are vented from the water outlet manifolds. Water channels (70) may be vertical. A hydrophobic region (80) provides gas leakage to ensure bubble pumping of water. An external heat exchanger (77) maximizes water density differential for convective flow.
摘要:
An improved membrane electrode assembly for PEM fuel cells is provided. Catalyst layers (40, 44) are disposed, respectively, on both sides of the proton exchange membrane (48). Gas diffusion layers (38, 50) are disposed, respectively, on sides of the catalyst layers (40, 44) not in contact with the proton exchange membrane (48). Porous substrates (32, 34) are disposed, respectively, on sides of the gas diffusion layers (38, 50) not in contact with the catalyst layers (40, 44). The porous substrates (32, 34) are impregnated at their periphery with a thermoplastic material. Thermoplastic film layers (42, 46, 68) are employed at the periphery of the assembly (10) between component parts to bond and seal water transport plates (12' and 16) to each other, as well as substrates (32, 32', 34) to the membrane electrode assembly (20). A foam tape 60, 62, 62' are employed to seal water transport plates (12, 12', 16) to respective substrates (32, 32', 34).
摘要:
An apparatus, such as a fuel cell powerplant 10 or a boiler 168, having a flow path for an aqueous solution and a method for operating the apparatus are disclosed. The aqueous solution includes water, iron based compounds, and ferric hydrous oxide of a character that retards the deposition of iron based compounds on the interior of the conduit.
摘要:
A pair of spool valves C and D connected in tandem are balanced between pressures of reactant gases supplied to a fuel cell power plant G to control the pressure differences between the gases so as to maintain those pressures substantially in the proportions necessary for operation of the fuel cell.
摘要:
A stack of fuel cells operating on gaseous reactants includes an ejector in integral heat exchange relationship with the stack for recirculating one of the reactant gases through the cells of the stack. The recirculating reactant is continuously heated by waste heat from the cells as it recirculates thereby preventing condensation of water from the recirculating reactant gas and thereby maintaining the dew point constant from the time the reactant gas leaves the cells until it is mixed with fresh reactant in the ejector. The fresh reactant gas is preheated prior to being introduced to the ejector so that there is no condensation throughout the entire loop. The recirculation rate relative to the amount of fresh reactant can be controlled to regulate the dew point at the entrance to the cells to best advantage. By this invention flooding of the electrodes or drying of the electrodes does not occur.
摘要:
An arrangement is provided in a fuel cell power plant (10) for dispensing (58 74, 60, 64) a liquid medium, such as water (66), into a process oxidant (air) stream (53) that flows through one gas channel (42) in an energy recovery device (ERD) (32). An exhaust gas stream (48) containing heat and moisture from the fuel cell (12) flows through another channel (44) in the ERD. An enthalpy exchange barrier (46) separates the one and the other gas channels, but allows mass and/or heat transfer therebetween. The water is injected into the air stream (53) in a controlled (70, 74) amount, and perhaps temperature (78), in response to sensed parameters (80, 84, 90) of the power plant, including the process air stream, to adjust one or more conditions in the power plant. Controlling ERD dryness, providing a defrost capability for the ERD, and/or preventing excessive water accumulation in the system are several of the conditions controlled.