摘要:
Process for measuring the effects on the mechanical proper-ties of shales due to interaction with drilling fluids, which comprises: (a) preparation of a shale sample; (b) measurement of the transmission velocity of ultrasonic waves through the sample (a), (c) preparation of a mixture of water-or oil-based drilling fluid and the sample (a); (d) removal of the shale sample (a) from the mixture (c) and measurement of the ultrasonic wave transmission velocity; (e) comparison between the measurements of step (d) and those of step (b).
摘要:
Process for the continuous determination of the interaction between drilling fluids and shale formations, which comprises: (a) preparation of a water- or oil-based drilling fluid; (b) preparation of a shale sample having at least two flat, parallel opposite surfaces; (c) preparation of the mixture of (b) and (a); (d) continuous measurement of the ultrasonic wave transmission velocity through the sample (c), and variations in thickness (swelling and shrinking) of the shale sample, due to interaction with the drilling fluid (a).
摘要:
An electromagnetic energy transmitter is provided for borehole to surface electromagnetic (BSEM) surveying. The transmitter is lowered into a well borehole to a desired location in a well borehole to emit electromagnetic energy for the surveys. The transmitter affords more accurate measurements of its position in the well borehole. The transmitter also senses pressure and temperature conditions at its borehole location to provide indications of detected potential problems in the well from the survey or other sources, and to reduce risks and enhance safety and quality of the operations.
摘要:
A method of measuring a parameter characteristic of a rock formation is provided, the method including the steps of obtaining crosswell electromagnetic signals between two wells and using an inversion of said signals to investigate or delineate the presence of a resistivity anomaly, such as brine in a low resistivity background, wherein the resistivity anomaly is assumed to be distributed as one or more bodies characterized by a limited number of geometrical parameters and the inversion is used to determine said geometrical parameters. The method can also be applied to determine the trajectory of an in-fill well to be drilled.
摘要:
The present invention relates to a device used for the direct measurement of the permeability of rock fragments coming directly from the drilling of an oil well and commonly called cuttings, consisting of a hollow cylindrical body (c) that presents an inlet hole for the fluid (i), a thread for closing it (h) and a hydraulic seal (g) in which is placed the sample holder disk (d) which rests on the seal (g) and is overlapped by a porous sintered steel septum (e) on which a closing plug (f) is situated with an outlet hole for the fluid (i') and the same is also provided with a thread (h') to enable it to close on the body (c). The device can be used to obtain, directly on site, the measurement of permeability along the whole length of an oil well.
摘要:
Method for measuring the propagation velocities of ultrasonic acoustic waves through rock fragments which includes the steps of (a) introducing the fragment in a coupling fluid between a pair of piezoelectric transducers capable of generating highly damped ultrasonic acoustic waves; (b) passing highly damped ultrasonic acoustic waves through the fragment, said waves being generated by a pulse generator with a pulse width varying from 0.1 .mu.s to 20 .mu.s; (c) visualizing the obtained electric signals by an oscilloscope with a resolution of at least 10.sup.-2 .mu.s; and (d) measuring the transit time of the waves themselves. The ultrasonic acoustic waves may be compressional or shear waves. In one embodiment the coupling fluid has a viscosity varying be 200 and 800 poises.
摘要:
A method of measuring a parameter characteristic of a rock formation is provided, the method including the steps of obtaining crosswell electromagnetic signals between two wells and using an inversion of said signals to investigate or delineate the presence of a resistivity anomaly, such as brine in a low resistivity background, wherein the resistivity anomaly is assumed to be distributed as one or more bodies characterized by a limited number of geometrical parameters and the inversion is used to determine said geometrical parameters. The method can also be applied to determine the trajectory of an in-fill well to be drilled.
摘要:
An electromagnetic energy transmitter is provided for borehole to surface electromagnetic (BSEM) surveying. The transmitter is lowered into a well borehole to a desired location in a well borehole to emit electromagnetic energy for the surveys. The transmitter affords more accurate measurements of its position in the well borehole. The transmitter also senses pressure and temperature conditions at its borehole location to provide indications of detected potential problems in the well from the survey or other sources, and to reduce risks and enhance safety and quality of the operations.
摘要:
A method of determining water saturations from a deep-reading resistivity measurement in a reservoir is provided including the step of estimating, through for example a reservoir simulation process, a spatial distribution of a parameter related to the water conductivity at locations beyond the immediate vicinity of wells penetrating the reservoir and combining the spatial distribution of a parameter related to the water conductivity with a spatial distribution of resistivity as obtained from the deep-reading resistivity measurement to derive a spatial distribution of water saturations at said locations beyond the immediate vicinity of wells, wherein estimation step may be iterative to minimize a mismatch between simulation and measurement.
摘要:
A method of determining water saturations from a deep-reading resistivity measurement in a reservoir is provided including the step of estimating, through for example a reservoir simulation process, a spatial distribution of a parameter related to the water conductivity at locations beyond the immediate vicinity of wells penetrating the reservoir and combining the spatial distribution of a parameter related to the water conductivity with a spatial distribution of resistivity as obtained from the deep-reading resistivity measurement to derive a spatial distribution of water saturations at said locations beyond the immediate vicinity of wells, wherein estimation step may be iterative to minimize a mismatch between simulation and measurement.