Abstract:
Various methods and devices are provided to address the need for improved dual connectivity. For example, a network node (500) in a primary network includes a processing unit (501) and an interface unit (510), which includes a network interface (511) for communication with other network devices. The processing unit is communicatively coupled to the interface unit and configured to receive, from a user equipment (UE) via the interface unit, a secondary Internet Protocol (IP) address for the UE, the secondary IP address being associated with a secondary network of the UE. The processing unit is also configured to initiate via the interface unit the establishment of at least one tunnel to bridge the network node and the UE via the secondary network.
Abstract:
In one example embodiment, a method for reducing an effect of an interference signal on data being transmitted over a communication channel includes determining, by a processor, a code word based on at least an information vector and an interference vector, the information vector representing the data, the interference vector representing the interference signal. The method further includes determining, by the processor, a code vector based on the determined code word. The method further includes generating, by the processor, a transmit vector based on the code vector and the interference vector.
Abstract:
In one example embodiment, a method for reducing an effect of an interference signal on data being transmitted over a communication channel includes determining, by the processor, a code word based on a base information vector and an auxiliary vector, the base information vector including base information bits representing the data to be transmitted over the communication channel, the auxiliary vector corresponding to an interference vector representing the interference signal. The method further includes generating, by the processor, a transmit vector for transmission based on the determined code word and the interference vector.
Abstract:
Various exemplary embodiments relate to a method and related network node including one or more of the following: receiving, at the node, a network update message; determining whether the network update message should be propagated to other nodes; if the network update message should be propagated to other nodes, forwarding the network update message to at least one other node; and if the network update message should not be propagated to other nodes, refraining from forwarding the network update message to any other node. Various further embodiments relate to a method and related network node including one or more of the following: determining a first time period for the network update message; setting the first time period as a delay time; waiting for the delay time; and after the delay time has elapsed, computing new routing information based on the network update message.
Abstract:
Embodiments are described herein to provide improvements to known network interference cancellation techniques. One general approach involves a first network node attempting (801) to decode a received signal which includes signaling from a first wireless device transmission and at least one interfering transmission. If the first network node is unsuccessful in attempting to decode the received signal, it is determined (802) whether it would be cost effective to obtain decoded signaling from a serving network node of a wireless device that corresponds to the at least one interfering transmission. If (803) it is determined to be cost effective, the decoded signaling that corresponds to the at least one interfering transmission is requested.
Abstract:
The present disclosure generally discloses an interference mitigation capability. The present disclosure discloses use of dirty paper coding in a wireless communication network in order to mitigate interference in the wireless communication network. The wireless communication network may be a heterogeneous wireless communication network, where heterogeneity may be based on wireless access device technology type, wireless access device transmit power, or the like. For example, the wireless communication network may be a heterogeneous wireless communication network including a first type of wireless access device (e.g., a small cell device, such as a metro cell, microcell, picocell, femtocell, or the like) and a second type of wireless access device (e.g., a large cell device, such as a macro cell), where the first type of wireless access device is configured to use dirty paper coding to mitigate interference from the second type of wireless access device.
Abstract:
Various methods and apparatuses are provided to address the need for improved multi-carrier communication. In one apparatus, a radio access network (RAN) (402) includes multiple network nodes (403, 406) operative to transmit, via multiple carriers (411-412), packet data to a user element (UE) (401) using a protocol stack. The protocol stack includes a radio link control (RLC) layer split into an upper RLC processing layer and multiple lower RLC processing layers. Each lower RLC processing layer is associated with one carrier of the multiple carriers and each lower RLC processing layer supports packet data transmission via its associated carrier. The upper RLC processing layer supports packet data transmission via the multiple carriers.
Abstract:
In one embodiment, the method includes determining, at a network element, a first filter component based on reference sequences for user equipments in a first set. The method further includes determining a second filter component. The second component is based on a plurality of received signals and has estimated contributions to the plurality of received signals by the user equipments in the first set removed. The plurality of received signals are associated with a plurality of antennas. The method further includes filtering a selected received signal based on the first and second filter components to obtain an estimated signal for a selected user equipment.
Abstract:
The downlink control and uplink data channels between wireless user equipment and a wireless cell site are decoupled, allowing the user equipment to send data payloads to a second cell site via a different uplink data channel that provides greater throughput and/or a higher quality-of-experience for a user of the user equipment.
Abstract:
The efficiency of uplink data channels provided by a wireless cell is increased by using offset scheduling grants to control the transmission of data payloads from user equipment to the cell.