摘要:
Embodiments of a high-throughput (HT) communication station (STA) and method for communicating over a primary and a secondary channel are generally described herein. In some embodiments, the high-throughput (HT) communication station (STA) comprises a physical layer (PHY) and a media-access control (MAC) layer to provide a data unit to the physical layer. The PHY layer may be configured to transmit a packet that includes the data unit over a channel bandwidth comprising a first channel and an additional channel in accordance with an OFDM communication technique. The packet may have a frame structure that includes a channel bandwidth parameter to indicate the channel bandwidth used, a modulation and coding parameter to indicate a modulation and coding scheme of the packet as transmitted over the channel bandwidth.
摘要:
A frame structure for communicating over a high-throughput communication channel includes a channelization field as part of a current data unit to indicate a frequency and space configuration of subsequent portions of the current data unit.
摘要:
A frame format provides for wideband wireless local area network communications and informs narrower-band communication units when the channels are occupied by wider-band communication units. In some embodiments, the frame format includes a channelization field identifying channels that are used for communicating subsequent wideband fields of a packet, and a wideband-header field communicated on the identified channels. The wideband-header field may identify sub-fields that may be present in the wideband-header field, and may identify the presence of a wideband-data field. A long-compatibility field may be present that provides protection at the MAC level. The long-compatibility field may transport MAC frames that may include medium-reservation information compatible with narrower-band communication units.
摘要:
A method and apparatus to exchange channel state information between two or more stations is provided, The channel state information may be used to adapt a power, a transmission rate and a modulation scheme of a transmitted signal. Other embodiments are described and claimed.
摘要:
Briefly, an adaptive transmitted power control scheme, which may be used in stations of a communication system, for example, a wireless communication system. The scheme may allocate transmission power to a communication station based on multiplying each of at least one transmitted subcarrier complex number by a corresponding subcarrier weight. Additionally, a detection scheme may detect whether a transmitted power control scheme according to an embodiment of the invention is used by stations of the communication system. The allocation of transmission power may be also used to transmit additional service information through channels.
摘要:
Adaptive channelization is achieved in a high throughput multicarrier system by first subdividing a high throughput channel into a number of frequency sub-channels. A channelization decision may then be made within a device as to which of the sub-channels to use for a corresponding high throughput wireless link based on channel state information.
摘要:
A multiple-input multiple output (MIMO) receiver includes circuitry to receive a MIMO transmission through a plurality of antennas over a channel comprising two or more 20 MHz portions of bandwidth. The MIMO transmission comprises a plurality of streams, each transmitted over a corresponding spatial channel and configured for reception by multiple user stations. The MIMO receiver also includes circuitry to simultaneously accumulate signal information within at least two or more of the 20 MHz portions of bandwidth. Each 20 MHz portion comprises a plurality of OFDM subcarriers. The MIMO receiver also includes circuitry to demodulate at least one of the steams using receive beamforming techniques. In this way, multi-user protocol data units can be received.
摘要:
A multiple-input multiple output (MIMO) receiver includes circuitry to receive a MIMO transmission through a plurality of antennas over a channel comprising two or more 20 MHz portions of bandwidth. The MIMO transmission comprises a plurality of streams, each transmitted over a corresponding spatial channel and configured for reception by multiple user stations. The MIMO receiver also includes circuitry to simultaneously accumulate signal information within at least two or more of the 20 MHz portions of bandwidth. Each 20 MHz portion comprises a plurality of OFDM subcarriers. The MIMO receiver also includes circuitry to demodulate at least one of the steams using receive beamforming techniques. In this way, multi-user protocol data units can be received.
摘要:
A quasi-parallel receiver may simultaneously receive signals within several subchannels that comprise a wideband channel. The receiver includes a subchannel filter selection switch that provides a baseband signal to a selected one of a plurality of subchannel low-pass filters. A heterodyne frequency generator provides one of a plurality of heterodyne frequencies to convert an RF signal received within a selected subchannel to the baseband signal. The subchannel low-pass filters accumulate signal information from an associated one of a plurality of subchannels during a filter-input sampling interval. In some embodiments, individual analog-to-digital converters receive the accumulated signal outputs from an associated subchannel filter and generate digital signals for a subsequent Fourier transformation. In some embodiments, a normalized signal output may be provided to the analog-to-digital converters, allowing the use of lower resolution analog-to-digital converters. The analog-to-digital converters may have sampling rates based on the subchannel bandwidth.
摘要:
Briefly, a method and apparatus to exchange channel state information between two or more stations are provided. The channel state information may be used to adapt a power, a transmission rate and a modulation scheme of a transmitted signal. In some embodiments or the invention, a method comprises adapting a physical layer parameter based on exchanged channel information and exchanging over a channel the adapted physical layer parameter. In particular, in some embodiments of the invention, the physical layer parameter includes a bit and power loading parameter and the method comprises calculating a bit and power loading parameter during receiving a data packet; and applying the calculated bit and power loading parameter to a portion of an exchanged data packet.