摘要:
A surgical system and cassette, the cassette having an identification method that is specific to the cassette. Suitable methods include bar coding or Radio Frequency Identification (“RFID”). Cassette information that may be encoded include features such as lot number and performance characteristics, such as pressure sensor calibration data, flow and pressure data and any other performance characteristics of the cassette captured during testing of the cassette at manufacture.
摘要:
A surgical system and cassette, the cassette having an identification method that is specific to the cassette. Suitable methods include bar coding or Radio Frequency Identification (“RFID”). Cassette information that may be encoded include features such as lot number and performance characteristics, such as pressure sensor calibration data, flow and pressure data and any other performance characteristics of the cassette captured during testing of the cassette at manufacture.
摘要:
A surgical system and cassette, the cassette having an identification method that is specific to the cassette. Suitable methods include bar coding or Radio Frequency Identification (“RFID”). Cassette information that may be encoded include features such as lot number and performance characteristics, such as pressure sensor calibration data, flow and pressure data and any other performance characteristics of the cassette captured during testing of the cassette at manufacture.
摘要:
A surgical system and cassette, the cassette having an identification method that is specific to the cassette. Suitable methods include bar coding or Radio Frequency Identification (“RFID”). Cassette information that may be encoded include features such as lot number and performance characteristics, such as pressure sensor calibration data, flow and pressure data and any other performance characteristics of the cassette captured during testing of the cassette at manufacture.
摘要:
A system and method for non-invasive pressure sensing are disclosed. One embodiment of the system is an assembly comprising: a plurality of coherent light sources, wherein the plurality of coherent light sources are located in a fixed relationship to one another; an image sensor; and a pressure chamber, comprising a flexible diaphragm, the flexible diaphragm configured to flex in response to a change in pressure in the pressure chamber and operable to reflect a beam of light originating from each of the plurality of coherent light sources onto the image sensor. The pressure sensing assembly can further comprise a processing module operably coupled to the plurality of coherent light sources and to the image sensor and a memory operably coupled to the processing module, wherein the memory includes operational instructions that cause the processing module to carry out the steps of an embodiment of the method for non-invasive pressure sensing of this invention. Such a method can comprise the steps of: directing the plurality of coherent light beams, at a known incidence angle, onto the flexible diaphragm, wherein the plurality of coherent light beams form a pattern of light spots on the diaphragm; capturing at the image sensor an image of the light spot pattern reflected from the diaphragm, wherein the light spot pattern is indicative of the pressure within the pressure chamber; and determining the pressure within the pressure chamber from the captured light spot pattern of the image. The pressure sensing assembly can further comprise a fluidics interface operably coupled to the processor for receiving instructions from the processor to control fluid flow in a fluidics system coupled to the pressure chamber. Such a fluidics interface could be, for example, part of a surgical system, such as an ophthalmic surgical system, incorporating an embodiment of the present invention. The pressure sensing assembly can also comprise a calibration interface for providing calibration inputs to the processor.
摘要:
In accordance with an exemplary embodiment of the present invention, an optical apparatus includes a glass monolithic structure including a plurality of optical filter elements, and the glass monolithic structure is not an optical fiber. In accordance with another exemplary embodiment of the present invention, an optical apparatus includes a glass monolithic structure which includes a plurality of optical filter elements. The optical apparatus further includes a device which selectively aligns an optical input and an optical output to one of said plurality of optical filter elements. In accordance with another exemplary embodiment of the present invention, a method of adding/dropping a particular frequency from an optical signal includes providing a glass monolithic structure which further includes a plurality of optical filter elements. The method further includes providing a device which selectively aligns an optical input and an optical output to one of the plurality of optical filters.
摘要:
A fiber optic device for use in fiber optic transmission systems and components thereof includes a pass-through fiber and one or more lengths of circulating fiber connected to the pass-through fiber by respective optical switches for selectively routing an optical signal through the circulating fiber lengths as it propagates along the pass-through fiber. The circulating fiber lengths are either dispersion compensating fibers or fibers doped with a substance that will amplify or absorb the optical signal in the respective presence or absence of a pump signal. The invention thus allows various amounts of dispersion or gain (absorption) to be selectively switched into or out of use depending upon requirements at the time. For example, an amplifying component could serve as a pre- or power- or in-line amplifier device depending on the lesser or greater amount of gain fiber elected by switching. The device can be interconnected with the transmission system or components thereof via splicing to of the ends of the pass-through fiber or via optical switches connected to the ends of the pass through fiber.