-
1.
公开(公告)号:US06674282B2
公开(公告)日:2004-01-06
申请号:US10218974
申请日:2002-08-13
IPC分类号: G01V300
CPC分类号: G01R33/445 , G01R33/3808 , G01R33/46 , G01R33/4608 , G01R33/4616 , G01R33/48 , G01R33/485
摘要: A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.
摘要翻译: 用于非均匀静态和射频场中磁体物理极限外的样品的非原位核磁共振光谱法的方法和装置。 在存在空间匹配的静态和射频场梯度产生章动回波的情况下,可以使用相关的复合z旋转脉冲序列来解决化学位移谱。 回波的幅度由化学位移相互作用调制,并且不均匀性的自由FID可以通过频谱采样回波的最大值来恢复。 在替代实施例中,连续应用全通道绝热脉冲。 该装置的一个实施例产生具有可变鞍点的静态磁场。
-
公开(公告)号:US07061237B2
公开(公告)日:2006-06-13
申请号:US10268922
申请日:2002-10-09
申请人: Alexander Pines , Sunil Saxena , Adam Moule , Megan Spence , Juliette A. Seeley , Kimberly L. Pierce , Song-I Han , Josef Granwehr
发明人: Alexander Pines , Sunil Saxena , Adam Moule , Megan Spence , Juliette A. Seeley , Kimberly L. Pierce , Song-I Han , Josef Granwehr
IPC分类号: G01V3/00
CPC分类号: G01R33/282 , A61K49/1815 , G01R33/46 , G01R33/5601
摘要: An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb—Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.
-