FOUR-DIMENSIONAL (4D) IMAGE VERIFICATION IN RESPIRATORY GATED RADIATION THERAPY
    1.
    发明申请
    FOUR-DIMENSIONAL (4D) IMAGE VERIFICATION IN RESPIRATORY GATED RADIATION THERAPY 有权
    呼吸道放射治疗中的四维(4D)图像验证

    公开(公告)号:US20080031404A1

    公开(公告)日:2008-02-07

    申请号:US11831090

    申请日:2007-07-31

    IPC分类号: A61B6/00

    摘要: A method for four-dimensional (4D) image verification in respiratory gated radiation therapy, includes: acquiring 4D computed tomography (CT) images, each of the 4D CT images representing a breathing phase of a patient and tagged with a corresponding time point of a first surrogate signal; acquiring fluoroscopic images of the patient under free breathing, each of the fluoroscopic images tagged with a corresponding time point of a second surrogate signal; generating digitally reconstructed radiographs (DRRs) for each breathing phase represented by the 4D CT images; generating a similarity matrix to assess a degree of resemblance in a region of interest between the DRRs and the fluoroscopic images; computing a compounded similarity matrix by averaging values of the similarity matrix across different time points of the breathing phase during a breathing period of the patient; determining an optimal time point synchronization between the DRRs and the fluoroscopic images by using the compounded similarity matrix; and acquiring a third surrogate signal and turning a treatment beam on or off according to the optimal time point synchronization.

    摘要翻译: 呼吸门控放射治疗中四维(4D)图像验证的方法包括:获取4D计算机断层摄影(CT)图像,每个4D CT图像代表患者的呼吸阶段,并用相应的时间点标记 第一替代信号; 在自由呼吸下获取患者的透视图像,每个透视图像标记有第二替代信号的相应时间点; 为由4D CT图像表示的每个呼吸阶段生成数字重建X射线照片(DRR); 生成相似性矩阵以评估DRR和荧光透视图像之间的感兴趣区域中的相似程度; 通过在患者的呼吸期间在呼吸阶段的不同时间点平均相似性矩阵的值来计算复合相似性矩阵; 通过使用复合相似度矩阵确定DRR和荧光透视图像之间的最佳时间点同步; 并根据最佳时间点同步获取第三替代信号并打开或关闭治疗束。

    Four-dimensional (4D) image verification in respiratory gated radiation therapy
    2.
    发明授权
    Four-dimensional (4D) image verification in respiratory gated radiation therapy 有权
    呼吸门控放射治疗四维(4D)图像验证

    公开(公告)号:US07570738B2

    公开(公告)日:2009-08-04

    申请号:US11831090

    申请日:2007-07-31

    IPC分类号: A61N5/10 A61B6/02 A61B6/03

    摘要: A method for four-dimensional (4D) image verification in respiratory gated radiation therapy, includes: acquiring 4D computed tomography (CT) images, each of the 4D CT images representing a breathing phase of a patient and tagged with a corresponding time point of a first surrogate signal; acquiring fluoroscopic images of the patient under free breathing, each of the fluoroscopic images tagged with a corresponding time point of a second surrogate signal; generating digitally reconstructed radiographs (DRRs) for each breathing phase represented by the 4D CT images; generating a similarity matrix to assess a degree of resemblance in a region of interest between the DRRs and the fluoroscopic images; computing a compounded similarity matrix by averaging values of the similarity matrix across different time points of the breathing phase during a breathing period of the patient; determining an optimal time point synchronization between the DRRs and the fluoroscopic images by using the compounded similarity matrix; and acquiring a third surrogate signal and turning a treatment beam on or off according to the optimal time point synchronization.

    摘要翻译: 呼吸门控放射治疗中四维(4D)图像验证的方法包括:获取4D计算机断层摄影(CT)图像,每个4D CT图像代表患者的呼吸阶段,并用相应的时间点标记 第一替代信号; 在自由呼吸下获取患者的透视图像,每个透视图像标记有第二替代信号的相应时间点; 为由4D CT图像表示的每个呼吸阶段生成数字重建X射线照片(DRR); 生成相似性矩阵以评估DRR和荧光透视图像之间的感兴趣区域中的相似程度; 通过在患者的呼吸期间在呼吸阶段的不同时间点平均相似性矩阵的值来计算复合相似性矩阵; 通过使用复合相似度矩阵确定DRR和荧光透视图像之间的最佳时间点同步; 并根据最佳时间点同步获取第三替代信号并打开或关闭治疗束。

    System and method for global-to-local shape matching for automatic liver segmentation in medical imaging
    4.
    发明授权
    System and method for global-to-local shape matching for automatic liver segmentation in medical imaging 有权
    用于医学成像中自动肝分割的全局到局部形状匹配的系统和方法

    公开(公告)号:US08131038B2

    公开(公告)日:2012-03-06

    申请号:US12189276

    申请日:2008-08-11

    IPC分类号: G06K9/00

    摘要: A method for automatically segmenting a liver in digital medical images includes providing a 3-dimensional (3D) digital image I and a set of N training shapes {φi}i=1, . . . , N for a liver trained from a set of manually segmented images, selecting a seed point to initialize the segmentation, representing a level set function φα(θx+h) of a liver boundary Γ in the image as ϕ α ⁡ ( x ) = ϕ 0 + ∑ i = 1 n ⁢ α i ⁢ V i ⁡ ( x ) , ⁢ where ⁢ ϕ 0 ⁡ ( x ) = 1 N ⁢ ∑ i = 1 N ⁢ ϕ i ⁡ ( x ) is a mean shape, {Vi(x)}i=1, . . . , n are eigenmodes where n

    摘要翻译: 用于在数字医学图像中自动分割肝脏的方法包括提供三维(3D)数字图像I和一组N个训练形状{&phgr; i} i = 1。 。 。 ,用于从一组手动分割图像训练的肝脏,选择种子点来初始化分割,代表肝脏边界&Ggr的水平集函数<α(& t; x + h); 在形象与&phis; α⁡(x)=&phis; 0 +Σi = 1nαi V i⁡(x),where&phis; 0⁡(x)= 1NΣi= 1 N&phis; i⁡(x)是平均形状,{Vi(x)} i = 1,。 。 。 ,n是本征模式,其中n

    Method and system for histogram calculation using a graphics processing unit
    6.
    发明申请
    Method and system for histogram calculation using a graphics processing unit 有权
    使用图形处理单元进行直方图计算的方法和系统

    公开(公告)号:US20070127814A1

    公开(公告)日:2007-06-07

    申请号:US11594460

    申请日:2006-11-08

    IPC分类号: G06K9/34

    CPC分类号: G06T1/20

    摘要: A method for histogram calculation using a graphics processing unit (GPU), comprises storing image data in a two-dimensional (2D) texture domain; subdividing the domain into independent regions or tiles; calculating in parallel, in a GPU, a plurality of tile histograms, one for each tile; and summing up in parallel, in the GPU, the tile histograms so as to derive a final image histogram.

    摘要翻译: 一种使用图形处理单元(GPU)进行直方图计算的方法,包括将图像数据存储在二维(2D)纹理域中; 将域细分为独立区域或瓦片; 在GPU中并行计算多个瓦片直方图,每个瓦片一个; 并且在GPU中并行地并行地绘制瓦片直方图,以便导出最终图像直方图。

    Efficient segmentation of piecewise smooth images
    7.
    发明授权
    Efficient segmentation of piecewise smooth images 有权
    分段平滑图像的高效分割

    公开(公告)号:US07889941B2

    公开(公告)日:2011-02-15

    申请号:US11696869

    申请日:2007-04-05

    IPC分类号: G06K9/44

    摘要: A fast and robust segmentation model for piecewise smooth images is provided. Local statistics in an energy formulation are provided as a functional. The shape gradient of this new functional gives a contour evolution controlled by local averaging of image intensities inside and outside the contour. Fast computation is realized by expressing terms as the result of convolutions implemented via recursive filters. Results are similar to the general Mumford-Shah model but realized faster without having to solve a Poisson partial differential equation at each iteration. Examples are provided. A system to implement segmentation methods is also provided.

    摘要翻译: 提供了一种用于分段平滑图像的快速且鲁棒的分割模型。 提供能量公式中的本地统计作为功能。 这种新功能的形状梯度给出了通过轮廓内部和外部的图像强度的局部平均来控制的轮廓演化。 通过表达术语作为通过递归滤波器实现的卷积的结果来实现快速计算。 结果与一般的Mumford-Shah模型相似,但实现得更快,而无需在每次迭代中解决泊松偏微分方程。 提供了实例。 还提供了一种实现分割方法的系统。

    Method of computing global-to-local metrics for recognition
    9.
    发明授权
    Method of computing global-to-local metrics for recognition 有权
    计算用于识别的全局到本地度量的方法

    公开(公告)号:US08488873B2

    公开(公告)日:2013-07-16

    申请号:US12574717

    申请日:2009-10-07

    IPC分类号: G06K9/62 G06K9/00

    CPC分类号: G06K9/6215 G06N99/005

    摘要: A method of computing global-to-local metrics for recognition. Based on training examples with feature representations, the method automatically computes a local metric that varies over the space of feature representations to optimize discrimination and the performance of recognition systems.Given a set of points in an arbitrary features space, local metrics are learned in a hierarchical manner that give low distances between points of same class and high distances between points of different classes. Rather than considering a global metric, a class-based metric or a point-based metric, the proposed invention applies successive clustering to the data and associates a metric to each one of the clusters.

    摘要翻译: 计算用于识别的全局到本地度量的方法。 基于具有特征表示的训练示例,该方法自动计算在特征表示空间上变化的局部度量,以优化识别系统的识别和性能。 给定任意特征空间中的一组点,以分级方式学习局部度量,这样可以在不同类别的点之间提供相同类别的点和高距离之间的较低距离。 所提出的发明不是考虑全局度量,基于类的度量或基于点的度量,而是将连续的聚类应用于数据并将度量与每个集群相关联。