摘要:
A new method for design and scale-up of photocatalytic and thermocatalytic processes is disclosed. The method is based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low and high-flux photoreactor design and scale-up. The low-flux method is based on the implementation of natural biopolymeric and other low-pressure drop media support for titanium dioxide and other band-gap photocatalysts. The high-flux method is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.
摘要:
A new method for design and scale-up of photocatalytic and thermocatalytic processes is disclosed. The method is based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to photo-thermocatalytic reactor design and scale-up. At low irradiance levels, the method is based on the implementation of low pressure drop biopolymeric and synthetic polymeric support for titanium dioxide and other band-gap media. At high irradiance levels, the method utilizes multifunctional metal oxide aerogels and other media within a novel rotating fluidized particle bed reactor.
摘要:
A new apparatus for design and scale-up of photocatalytic and thermocatalytic processes is disclosed. The apparatus is based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants and is applicable to both low- and high-flux photoreactor design and scale-up. The low-flux apparatus is based on the implementation of natural biopolymeric and other low-pressure drop media support for titanium dioxide and other band-gap photocatalysts and is further based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.
摘要:
A new method for design and scale-up of photocatalytic and thermocatalytic processes is disclosed. The method is based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to photo-thermocatalytic reactor design and scale-up. At low irradiance levels, the method is based on the implementation of low pressure drop biopolymeric and synthetic polymeric support for titanium dioxide and other band-gap media. At high irradiance levels, the method utilizes multifunctional metal oxide aerogels and other media within a novel rotating fluidized particle bed reactor.
摘要:
A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.
摘要:
A new method for design and scale-up of photocatalytic and thermocatalytic processes is disclosed. The method is based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. The low-flux method is based on the implementation of natural biopolymeric and other low-pressure drop media support for titanium dioxide and other band-gap photocatalysts. The high-flux method is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.
摘要:
A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.
摘要:
An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.
摘要:
Methods of destroying toxic volatile air-borne toxins are disclosed. In a preferred embodiment, a piece of formaldehyde laden substrate(wood) such as paneling and furniture is treated with TiO.sub.2 solution to form a thin and translucent veneer on the surface. This layer acts like a membrane preventing outward transport of formaldehyde and other harmful compounds produced by weatherization and natural degradation of the substrate. In a prefered embodiment the photocatalytic destruction of formaldehyde is achieved. Other toxins destroyed include terpenes and other types of toxic volatile organic compounds(VOCs). While the prefered embodiment is applied to wood based supports such as paneling and furniture, the invention has applicability for other surfaces such as caskets and roof shingles. For example, the TiO.sub.2 coating can be used on flexible paper type face masks in order to destroy air-borne toxic compounds such as formaldehyde and the like that are used in medical environments where embalming procedures using toxins such as formaldehyde are used.
摘要:
A process is provided for conditioning fly-ash present in flue gas which also contains sulfur dioxide and steam by subjecting the fly-ash containing flue gas to ultraviolet radiation so as to convert steam present in the flue gas into hydroxyl radicals which oxidizes about 5 to 10 percent of the sulfur dioxide in the flue gas into sulfur trioxide. This photo-produced sulfur trioxide conditions the fly-ash and renders it more easily separated in the electrostatic precipitator.