Abstract:
In one embodiment, a method for facilitating maintaining wireless connectivity and roaming in wireless networks includes estimating a current location of the wireless client and determining a physical route and a wireless access point route based on the current location and a destination.
Abstract:
Methods, apparatuses and systems directed to providing location services in a wireless network. According to one implementation of the present invention, the wireless network infrastructure provides high-accuracy location information via location services to wireless clients. In one embodiment, during an advertisement phase, a location server provides a list of available location services to wireless clients via a central controller. In another embodiment, during a presentation phase, a driver of the wireless client presents the available location services to one or more applications of the wireless client. In another embodiment, during a request phase, the driver transmits a location service request to the central controller, which passes the location service request to the location server.
Abstract:
Methods, apparatuses and systems directed to providing location services in a wireless network. According to one implementation of the present invention, the wireless network infrastructure provides high-accuracy location information via location services to wireless clients. In one embodiment, during an advertisement phase, a location server provides a list of available location services to wireless clients via a central controller. In another embodiment, during a presentation phase, a driver of the wireless client presents the available location services to one or more applications of the wireless client. In another embodiment, during a request phase, the driver transmits a location service request to the central controller, which passes the location service request to the location server.
Abstract:
Methods, apparatuses and systems directed to providing location services in a wireless network. According to one implementation of the present invention, the wireless network infrastructure provides high-accuracy location information via location services to wireless clients. In one embodiment, during an advertisement phase, a location server provides a list of available location services to wireless clients via a central controller. In another embodiment, during a presentation phase, a driver of the wireless client presents the available location services to one or more applications of the wireless client. In another embodiment, during a request phase, the driver transmits a location service request to the central controller, which passes the location service request to the location server.
Abstract:
In one embodiment, a method for facilitating maintaining wireless connectivity and roaming in wireless networks includes estimating a current location of the wireless client and determining a physical route and a wireless access point route based on the current location and a destination.
Abstract:
A method for populating location wiremap databases. In particular implementations, a method includes establishing a link layer connection with a client on a switch port, where the switch port is associated with a port identifier and is mapped to a location; identifying one or more connection attributes of the connection, where the connection attributes comprise a network layer address of the client; and transmitting the port identifier and the network layer address of the client to a location server.
Abstract:
In one embodiment, wireless access point management is optimized. The data bandwidth and/or processing requirements for data indicating operation of the access point is baselined. For example, air quality or interference measurements are made at the access point on a regular basis. The interference measurements over one or more periods, such as one period of 24 hours, provide a baseline. Rather than transmitting and processing the subsequent measurements that are normal or within the baseline, a lack of information or data requiring less bandwidth than the measurements communicates to a controller or server that the measurements are normal or within the baseline.
Abstract:
An apparatus, a method, and logic encoded in computer readable media that when executed operable to carry out the method. The method includes wirelessly receiving at a receiving station a signal transmitted from a transmitting station in a wireless network. The signal includes a network identifier, e.g., MAC address of the transmitting station. The method includes determining one or more RF waveform characteristics of at least a transient part of the received signal, decoding the received signal to determine the network identifier, e.g., MAC address, determining one or more behavior characteristics from the received signal; and using the decoded network identifier, e.g., MAC address and a combination of the one or more waveform characteristics and the one or more behavior characteristics to ascertain whether or not the network identifier, e.g., MAC address is a spoofed identifier, the ascertaining using historical samples of combinations for different network identifiers.
Abstract:
In an example embodiment, a wireless device is configured to associate with a first access point on a first frequency. The wireless device listens for a predefined frame, which may be sent by neighboring access points or other wireless devices. When the wireless device receives a signal comprising a predefined frame, the wireless device acquires a parameter, such as signal strength, for the signal. The wireless device sends the parameter for the signal to the first access point.
Abstract:
Methods, apparatuses, and systems directed to processing location and network data in a wireless network. According to one implementation of the present invention, a location server functions both as a middleware data collection engine and a calculation engine in a hierarchical WLAN system. In one implementation, the location server collects network data associated with mobile nodes. As described in further detail below, mobile nodes may include one or more of wireless mobile stations (e.g., wireless laptops, dual-mode phones, personal digital assistants, etc.), radio frequency identification (RFID) tags, rogue wireless access points and rogue wireless clients. In one implementation, the location server may process at least some of the network data to determine information associated with the mobile nodes. For example, the location server may compute the location of a given mobile node, which is accessible to other applications using one or more defined application programming interfaces (APIs). In one implementation, the location server may track the node history of a given mobile node. In one implementation, the location server may correlate processed network information to one or more locations or regions in the wireless network environment. For example, in one implementation, the location server may compute the load (i.e., amount of traffic) in a given region. The load may be used to further compute traffic patterns in the region. Such computations may be based on types of mobile nodes (e.g., wireless clients) and/or based on time periods (e.g., 12 pm-5 pm). As described in more detail below, such information may facilitate management of a wireless network. For example, the processed information may indicate locations that may require deployment of more resources (e.g., additional wireless access points).