摘要:
A bioactive catalytic material is disclosed for providing protection from chemical exposure. The material is composed of enzymes immobilized within polyelectrolyte multilayers and a polymerizable end-capping layer to render stability to enzymes. Also disclosed is the related method for making a bioactive catalytic material and their deposition on substrates of varying size, shape and flexibility for providing active protection from chemical exposure.
摘要:
A bioactive catalytic material is disclosed for providing protection from chemical exposure. The material is composed of enzymes immobilized within polyelectrolyte multilayers and a polymerizable end-capping layer to render stability to enzymes. Also disclosed is the related method for making a bioactive catalytic material and their deposition on substrates of varying size, shape and flexibility for providing active protection from chemical exposure.
摘要:
Catalytic enzyme-modified textiles are disclosed for providing protection from chemical exposure. The textiles are composed of a cloth substrate, at least one polyelectrolyte layer, at least one enzyme layer to degrade the chemical agent, and at least one capping layer. Also disclosed is the related method for making catalytic enzyme-modified textiles.
摘要:
A bioactive catalytic material is disclosed for providing protection from chemical exposure. The material is composed of enzymes immobilized within polyelectrolyte multilayers and a polymerizable end-capping layer to render stability to enzymes. Also disclosed is the related method for making a bioactive catalytic material and their deposition on substrates of varying size, shape and flexibility for providing active protection from chemical exposure.
摘要:
The invention relates to a microbattery made of bioelectroactive components based on biomimetic processes. Bio-derived electron donors and electron acceptors are separately encapsulated in at least one pair of polymerized phospholipid vesicles. Embedded within the vesicle walls are lipophilic electron mediators that facilitate the transfer of electrons across the vesicle walls. Each pair of vesicles is immobilized on a conducting surface. The pair of vesicles are isolated from each other to create a galvanic cell, in which electrons flow from high to low electrochemical potential. A high energy density battery can be achieved if the vesicles are immobilized on highly porous conducting substrates.
摘要:
A galvanic cell having a cathode, an anode, and an electrolyte. The cathode and anode each have vesicles, an electroactive species encapsulated into the vesicles, a conducting substrate, and functionalized tethers immobilizing the vesicles to the substrates. The electrolyte is in contact with both conducting substrates. At least some of the vesicles contain benzoquinone and/or hydroquinone.
摘要:
Catalytic enzyme-modified textiles are disclosed for providing protection from chemical exposure. The textiles are composed of a cloth substrate, at least one polyelectrolyte layer, at least one enzyme layer to degrade the chemical agent, and at least one capping layer. Also disclosed is the related method for making catalytic enzyme-modified textiles.
摘要:
Catalytic enzyme-modified textiles are disclosed for providing protection from chemical exposure. The textiles are composed of a cloth substrate, at least one polyelectrolyte layer, at least one enzyme layer to degrade the chemical agent, and at least one capping layer. Also disclosed is the related method for making catalytic enzyme-modified textiles.
摘要:
Catalytic enzyme-modified textiles are disclosed for providing protection from chemical exposure. The textiles are composed of a cloth substrate, at least one polyelectrolyte layer, at least one enzyme layer to degrade the chemical agent, and at least one capping layer. Also disclosed is the related method for making catalytic enzyme-modified textiles.
摘要:
A computer-readable medium, computer-implemented method, and system are provided. In one embodiment, a rollback checkpoint for a step in an executable process is established, and the executable process is executed. A change request is received, and the step with the established rollback checkpoint is adjusted. Any subsequent steps of the executable process are also adjusted.