Abstract:
Methods, systems, and computer-readable media for scaling for virtualized graphics processing are disclosed. A first virtual GPU is attached to a virtual compute instance of a provider network. The provider network comprises a plurality of computing devices configured to implement a plurality of virtual compute instances with multi-tenancy. The first virtual GPU is replaced by a second virtual GPU based at least in part on a change in GPU requirements for the virtual compute instance. The first and second virtual GPUs are implemented using physical GPU resources that are accessible to the virtual compute instance over a network. Processing for the virtual compute instance is migrated from the first virtual GPU to the second virtual GPU. An application is executed using the second virtual GPU on the virtual compute instance.
Abstract:
Methods, systems, and computer-readable media for virtualizing graphics processing in a provider network are disclosed. A virtual compute instance is provisioned from a provider network. The provider network comprises a plurality of computing devices configured to implement a plurality of virtual compute instances with multi-tenancy. A virtual GPU is attached to the virtual compute instance. The virtual GPU is implemented using a physical GPU, and the physical GPU is accessible to the virtual compute instance over a network. An application is executed using the virtual GPU on the virtual compute instance. Executing the application generates virtual GPU output that is provided to a client device.
Abstract:
Methods, systems, and computer-readable media for placement optimization for virtualized graphics processing are disclosed. A provider network comprises a plurality of instance locations for physical compute instances and a plurality of graphics processing unit (GPU) locations for physical GPUs. A GPU location for a physical GPU or an instance location for a physical compute instance is selected in the provider network. The GPU location or instance location is selected based at least in part on one or more placement criteria. A virtual compute instance with attached virtual GPU is provisioned. The virtual compute instance is implemented using the physical compute instance in the instance location, and the virtual GPU is implemented using the physical GPU in the GPU location. The physical GPU is accessible to the physical compute instance over a network. An application is executed using the virtual GPU on the virtual compute instance.
Abstract:
Methods, systems, and computer-readable media for local-to-remote migration for virtualized graphics processing are disclosed. A virtual compute instance comprising a local GPU is provisioned from a provider network. The provider network comprises a plurality of computing devices configured to implement a plurality of virtual compute instances with multi-tenancy. A virtual GPU is attached to the virtual compute instance. The virtual GPU is implemented using a physical GPU, and the physical GPU is accessible to the virtual compute instance over a network. Graphics processing for the virtual compute instance is migrated from the local GPU to the virtual GPU. An application is executed using the virtual GPU on the virtual compute instance.
Abstract:
Methods, systems, and computer-readable media for placement optimization for virtualized graphics processing are disclosed. A provider network comprises a plurality of instance locations for physical compute instances and a plurality of graphics processing unit (GPU) locations for physical GPUs. A GPU location for a physical GPU or an instance location for a physical compute instance is selected in the provider network. The GPU location or instance location is selected based at least in part on one or more placement criteria. A virtual compute instance with attached virtual GPU is provisioned. The virtual compute instance is implemented using the physical compute instance in the instance location, and the virtual GPU is implemented using the physical GPU in the GPU location. The physical GPU is accessible to the physical compute instance over a network. An application is executed using the virtual GPU on the virtual compute instance.
Abstract:
Methods, systems, and computer-readable media for application-specific virtualized graphics processing are disclosed. A virtual compute instance is provisioned from a provider network. The provider network comprises a plurality of computing devices configured to implement a plurality of virtual compute instances with multi-tenancy. A virtual GPU is attached to the virtual compute instance. The virtual GPU is selected based at least in part on requirements of an application. The virtual GPU is implemented using a physical GPU, and the physical GPU is accessible to the virtual compute instance over a network. The application is executed using the virtual GPU on the virtual compute instance.
Abstract:
A computing system providing virtual computing services may generate and manage remote computing sessions between client devices and virtual desktop instances (workspaces) hosted on the service provider's network. The system may implement a virtual private cloud for a workspaces service that extends out to gateway components in multiple, geographically distributed point of presence (POP) locations. In response to a client request for a virtual desktop session, the service may configure a virtual computing resource instance for the session and establish a secure, reliable, low latency communication channel (over a virtual private network) between the resource instance and a gateway component at a POP location near the client for communication of a two-way interactive video stream for the session. The availability zone containing the POP location may be different than one hosting the resource instance for the session. Client devices may connect to the gateway component over a public network.