摘要:
A phase identification system is proposed. The system includes a sensor coupled to a terminal of a distribution transformer. A processor is coupled to the sensor for processing phase information of the terminal, wherein the sensor and the processor are embedded within a bushing unit on the distribution transformer. The processor is further configured to identify and display phase information at the distribution transformer.
摘要:
A phase identification system is proposed. The system includes a sensor coupled to a terminal of a distribution transformer. A processor is coupled to the sensor for processing phase information of the terminal, wherein the sensor and the processor are embedded within a bushing unit on the distribution transformer. The processor is further configured to identify and display phase information at the distribution transformer.
摘要:
A method to identify phase is presented. The method includes obtaining electrical parameters at a node and a substation of an electrical grid, processing the electrical parameters of the node and the substation into processed electrical parameters comprising at least one of a voltage harmonic amplitude, a current harmonic amplitude, a geometric harmonic modulated signal, and a noise pattern. The method further includes comparing the processed electrical parameters from the node and the substation and identifying phase information of the node with respect to the substation.
摘要:
Methods and systems are described for determining a phase of transmitted voltage. In one embodiment, a power distribution system may operate to transmit voltage and an injected signal. The system may also include a power meter that may receive the voltage and injected signal. The power meter may determine a phase of the received voltage based on the received voltage and the injection signal.
摘要:
A method to identify phase is presented. The method includes obtaining electrical parameters at a node and a substation of an electrical grid, processing the electrical parameters of the node and the substation into processed electrical parameters comprising at least one of a voltage harmonic amplitude, a current harmonic amplitude, a geometric harmonic modulated signal, and a noise pattern. The method further includes comparing the processed electrical parameters from the node and the substation and identifying phase information of the node with respect to the substation.
摘要:
A system for distributing electrical current to a plurality of loads includes a first sensor coupled to an input of a protection zone for measuring a first current entering the protection zone, wherein the protection zone includes at least a portion of an electrical distribution feeder. The system also includes a second sensor coupled to an output of the protection zone for measuring a second current exiting the protection zone, and a processor coupled to the first sensor and to the second sensor. The processor is programmed to receive measurements representative of the first current and the second current, and calculate a reactive current differential of the protection zone based on the first current and the second current. The processor is also programmed to compare the reactive current differential with a fault threshold, and generate an error notification if the reactive current differential is greater than the fault threshold.
摘要:
A system and method are provided for battery control of hybrid vehicles such as, but not limited to, hybrid locomotives. The system and method are implemented to sense a present state of charge (SoC) of one or more batteries and generate present SoC data there from, sense a present excursion defined by a relationship represented as maximum SoC−minimum SoC for a desired cycle and generate present excursion data there from, and control the one or more battery power/current charging limits in response to the present SoC data and the present excursion data.
摘要:
A system for distributing electrical current to a plurality of loads includes a first sensor coupled to an input of a protection zone for measuring a first current entering the protection zone, wherein the protection zone includes at least a portion of an electrical distribution feeder. The system also includes a second sensor coupled to an output of the protection zone for measuring a second current exiting the protection zone, and a processor coupled to the first sensor and to the second sensor. The processor is programmed to receive measurements representative of the first current and the second current, and calculate a reactive current differential of the protection zone based on the first current and the second current. The processor is also programmed to compare the reactive current differential with a fault threshold, and generate an error notification if the reactive current differential is greater than the fault threshold.
摘要:
An electric distribution system includes at least one feeder and a protection and control system. The feeder includes at least one segment including a first end and an opposing second end. The protection and control system includes a protective device and an electric current measuring device coupled to the segment proximate each end. The system further includes at least one processor coupled in communication with the electric current measuring devices. The at least one processor is programmed to determine a difference between a synchronized first electric current measured proximate the first end and a synchronized second electric current measured proximate the opposing second end and determine a switching condition of the protective devices as a function of the difference between the synchronized first and second electric currents.
摘要:
An electric distribution system includes at least one feeder and a protection and control system. The feeder includes at least one segment including a first end and an opposing second end. The protection and control system includes a protective device and an electric current measuring device coupled to the segment proximate each end. The system further includes at least one processor coupled in communication with the electric current measuring devices. The at least one processor is programmed to determine a difference between a synchronized first electric current measured proximate the first end and a synchronized second electric current measured proximate the opposing second end and determine a switching condition of the protective devices as a function of the difference between the synchronized first and second electric currents.