摘要:
A compressible photonic crystal comprising a polymer with an ordered array of voids, the photonic crystal having a reflectance in a first wavelength range for light incident to its incident surface and its opposing incident surface; wherein compression against at least a portion of at least one of the surfaces shifts the reflectance to a second wavelength range in at least that portion of that surface. The crystal may be used in authentication devices of various types.
摘要:
A compressible photonic crystal comprising a polymer with an ordered array of voids, the photonic crystal having a reflectance in a first wavelength range for light incident to its incident surface and its opposing incident surface; wherein compression against at least a portion of at least one of the surfaces shifts the reflectance to a second wavelength range in at least that portion of that surface. The crystal may be used in authentication devices of various types.
摘要:
A method of using a chemical compound as an etchant for the removal of unmodified areas of a chalcogenide-based glass, while leaving the imagewise modified areas un-removed, wherein the compound contains a secondary amine, R1 R2 NH, with R1 and/or R2 having a sterically bulky group with more than 5 atoms.
摘要翻译:使用化学化合物作为蚀刻剂去除硫属元素化物基玻璃的未改性区域同时保留成像修饰区域未被去除的方法,其中所述化合物含有仲胺R 1 R 2 NH,其中R 1和/或 R2具有大于5个原子的空间庞大的基团。
摘要:
The present invention provides a straightforward and robust synthetic process for producing a chromatographic column with eluent-sensitive light diffracting properties based on an inherent photonic band structure and a chromatographic device using the chromatographic column. The present invention provides chromatographic devices employing a chromatographic column which in one embodiment is a photonic colloidal crystal which includes an assembly of colloidal microspheres assembled into a highly ordered array within a housing such as a tube with the highly ordered array being a photonic crystal along the length of the crystal, and a second embodiment which is an inverse construct of the first embodiment, where solid microspheres making up the photonic colloidal crystal chromatographic column are replaced with spherical voids or void spaces subsequent to infiltration of a material of selected refractive index. The photonic band structures of the first type of column made with colloidal particles and the second type of column made by inverting the first type of column may include a photonic band gap, a fundamental stop-band, higher stop-bands, or combinations thereof.
摘要:
The invention relates to a process for producing a photonic crystal which consists of a material of high refractive index, comprising the following process steps: a) providing a polymer structure with crosslinked air pores, whose surface has empty interstitial sites, b) applying a homogeneous, isotropic thin coating material to the surface of the polymer structure, c) introducing a high-index material, d) opening up a route to the polymer or to the coating material applied in step b), e) removing the layer applied in step b), f) removing the polymeric structure.
摘要:
The invention relates to a process for producing a photonic crystal which consists of a material of high refractive index, comprising the following process steps: a) providing a polymer structure with crosslinked air pores, whose surface has empty interstitial sites, b) applying a homogeneous, isotropic thin coating material to the surface of the polymer structure, c) introducing a high-index material, d) opening up a route to the polymer or to the coating material applied in step b), e) removing the layer applied in step b), f) removing the polymeric structure.
摘要:
A method of using a chemical compound as an etchant for the removal of unmodified areas of a chalcogenide-based glass, while leaving the imagewise modified areas un-removed, wherein the compound contains a secondary amine, R1 R2 NH, with R1 and/or R2 having a sterically bulky group with more than 5 atoms.
摘要翻译:使用化学化合物作为蚀刻剂去除硫属元素化物基玻璃的未改性区域同时保留成像修饰区域未被去除的方法,其中所述化合物含有仲胺R 1 R 2 NH,其中R 1和/或 R2具有大于5个原子的空间庞大的基团。
摘要:
A tunable photonic crystal device comprising: alternating layers of a first material and a second material, the alternating layers comprising a responsive material, the responsive material being responsive to an external stimulus, the alternating layers having a periodic difference in refractive indices giving rise to a first reflected wavelength; wherein, in response to the external stimulus, a change in the responsive material results in a reflected wavelength of the device shifting from the first reflected wavelength to a second reflected wavelength.
摘要:
This application describes a tunable photonic crystal device based on the electrical actuation of photonic crystal films. This device displays non-bleachable structural color, reflecting narrow bands of wavelengths tuned throughout the entire visible spectrum by expansion and contraction of the photonic crystal lattice
摘要:
The present invention discloses a widely wavelength tunable polychrome colloidal photonic crystal device whose optical Bragg diffraction stop bands and higher energy bands wavelength, width and intensity can be tuned in a continuous and fine, rapid and reversible, reproducible and predictable fashion and over a broad spectral range by a controlled expansion or contraction of the colloidal photonic lattice dimension, effected by a predetermined change in the electronic configuration of the composite material. In its preferred embodiment, the material is a composite in the form of a film or a patterned film or shape of any dimension or array of shapes of any dimension comprised of an organized array of microspheres in a matrix of a cross-linked metallopolymer network with a continuously variable redox state of charge and fluid content. The chemo-mechanical and electro-mechanical optical response of the colloidal photonic crystal-metallopolymer gel is exceptionally fast and reversible, attaining its fully swollen state from the dry shrunken state and vice versa on a sub-second time-scale. These composite materials can be inverted by removal of the constituent microspheres from the aforementioned colloidal photonic crystal metallopolymer-gel network to create a macroporous metallopolymer-gel network inverse colloidal photonic crystal film or patterned film or shape of any dimension optical Bragg diffraction stop bands and higher energy bands wavelength, width and intensity can be redox tuned in a continuous and fine, rapid and reversible, reproducible and predictable fashion and over a broad spectral range by a controlled expansion or contraction of the colloidal photonic lattice dimensions.