摘要:
Improving cell therapy and tissue regeneration in a patient suffering from a cardiovascular or a neurological disease by treating a tissue of the patient with shock waves and/or applying to the patient a therapeutically effective amount of stem cells and/or progenitor cells. Such treatment increases expression of chemoattractants, pro-angiogenic factors, and pro-survival factors. The chemoattractants can be, for example, vascular endothelial growth factor (VEGF) or stromal cell derived factor 1 (SDF-1). For example, the treated tissue can be located in the patient's heart or in a skeletal muscle of the patient, and the shock waves can be extracorporeal shock waves (ESW) or intracorporeal shock waves. The cardiovascular disease can have an ischemic or non-ischemic etiology. For example, the cardiovascular disease can be a myocardial infarction, ischemic cardiomyopathy, or a dilatative cardiomyopathy. For example, the neurological disease can be a peripheral neuropathy or neuropathic pain.
摘要:
Improving cell therapy and tissue regeneration in a patient suffering from a cardiovascular or a neurological disease by treating a tissue of the patient with shock waves and/or applying to the patient a therapeutically effective amount of stem cells and/or progenitor cells. Such treatment increases expression of chemoattractants, pro-angiogenic factors, and pro-survival factors. The chemoattractants can be, for example, vascular endothelial growth factor (VEGF) or stromal cell derived factor 1 (SDF-1). For example, the treated tissue can be located in the patient's heart or in a skeletal muscle of the patient, and the shock waves can be extracorporeal shock waves (ESW) or intracorporeal shock waves. The cardiovascular disease can have an ischemic or non-ischemic etiology. For example, the cardiovascular disease can be a myocardial infarction, ischemic cardiomyopathy, or a dilatative cardiomyopathy. For example, the neurological disease can be a peripheral neuropathy or neuropathic pain.
摘要:
Improving cell therapy and tissue regeneration in a patient suffering from a cardiovascular or a neurological disease by treating a tissue of the patient with shock waves and/or applying to the patient a therapeutically effective amount of stem cells and/or progenitor cells. Such treatment increases expression of chemoattractants, pro-angiogenic factors, and pro-survival factors. The chemoattractants can be, for example, vascular endothelial growth factor (VEGF) or stromal cell derived factor 1 (SDF-1). For example, the treated tissue can be located in the patient's heart or in a skeletal muscle of the patient, and the shock waves can be extracorporeal shock waves (ESW) or intracorporeal shock waves. The cardiovascular disease can have an ischemic or non-ischemic etiology. For example, the cardiovascular disease can be a myocardial infarction, ischemic cardiomyopathy, or a dilatative cardiomyopathy. For example, the neurological disease can be a peripheral neuropathy or neuropathic pain.
摘要:
An arrangement for generating focussed shock waves having two two-dimensional shock wave sources. The sources are of different types. In particular, an electromagnetic shock wave source is used in combination with a piezoelectric shock wave source. The arrangement has applications in no-contact lithotrity.
摘要:
A device for the testing and monitoring of the function of a shock wave or pressure wave source is provided. The testing and monitoring device is characterized in that a passive non-linear transmission element transforms very short shock wave pulses received by it, the shock wave pulses typically having pulse durations lasting a few microseconds, into a considerably lower frequency range, whose oscillations are then sensed and evaluated.
摘要:
Shock wave source based on the electromagnetic principle with defined focusing, with an electrically conductive, three-dimensionally curved membrane, with a coil, which is located adjacent thereto and to which current pulses can be admitted. A switchable electric connection is provided between the coil and a power supply unit. A housing is provided accommodating the membrane and the coil embedded in a coil form, between which housing and the membrane the coil form is located. A transmission medium is provided adjacent to the membrane and exerts pressure on the membrane. The coil form is made deformable and elastically compressible and is installed in the compressed state. The installed amount of the transmission medium remains unaffected during the operating state after the assembly.
摘要:
A spark gap unit that is easy to manufacture and significantly lighter than previously used spark gap units for generating underwater shock waves, particularly for non-invasive lithotrispy, has an internal conductor with an inner electrode, an insulation which at least partially envelops the internal conductor, and an external conductor with a bow and an outer electrode. The internal conductor is significantly shorter than the external conductor, and the external conductor at the rearward end of the spark gap unit projects beyond the internal conductor. The internal conductor, the insulation, and the external conductor are coaxially arranged. An outside diameter of the internal conductor is relatively small in comparison to an inside diameter of the external conductor. The spark gap unit has a hollow space inside the insulation, this hollow space being open in the direction of a rearward end of the spark gap unit. In the opposite direction from the rearward end, the hollow space is bounded by the internal conductor itself and the envelopment of the internal conductor by the insulation.
摘要:
The shock wave source according to the invention has a membrane of an electrically conductive material which is connected on one side with a propagation medium and, on the other side, with a flat coil. The membrane is subjected to a mechanical prestress which acts radially on it by virtue of the clamping of its edge area by at least one member which has a projection which extends in a direction normal to the plane of the membrane.