摘要:
Changes in fluid volume in a thoracic region, such as the lung, are detected by internally injecting a current through the region, detecting an induced voltage on the skin of the patient, and calculating an impedance value. A method for performing such a measurement includes injecting an electrical current between first and second internal electrodes that are implanted in the body and that are positioned such that a portion of the injected current flows through at least a portion of the region. The method also includes measuring a voltage between first and second external electrodes attached to an external surface of the skin of the body. The measured voltage is induced by the injected current. The method also includes calculating an impedance by taking the ratio of the measured voltage and the injected current, wherein the calculated impedance is related to the volume of fluid in the region.
摘要:
An implantable medical device includes a voltage measurement circuit to measure a potential difference between implanted electrodes in a thorax of a living being, the potential difference resulting from an electrical P-wave cardiac signal. The implantable medical device also includes a processing unit to calculate a vector corresponding to the P-wave cardiac signal, the vector comprising a magnitude and a direction, and derived from measured potential differences and orientations defined by locations of the implanted electrodes. The implantable medical device further includes a monitoring unit to track a rotation of the vector corresponding to the P-wave cardiac signal. In various implementations, the monitoring unit may use the rotation to detect an inter-atrial block condition.
摘要:
An implantable medical device includes a voltage measurement circuit to measure a potential difference between implanted electrodes in a thorax of a living being, the potential difference resulting from an electrical P-wave cardiac signal. The implantable medical device also includes a processing unit to calculate a vector corresponding to the P-wave cardiac signal, the vector comprising a magnitude and a direction, and derived from measured potential differences and orientations defined by locations of the implanted electrodes. The implantable medical device further includes a monitoring unit to track a rotation of the vector corresponding to the P-wave cardiac signal. In various implementations, the monitoring unit may use the rotation to detect an inter-atrial block condition.
摘要:
A method and apparatus for measuring impedance for pathology assessment in a living being using convergent bioelectric lead fields is disclosed, including injecting a current between first and second electrodes implanted in a body of a living being, where the first and second electrodes define a first electric lead field oriented between the first and second electrodes. A potential difference is measured between third and fourth electrodes implanted in the body, where the potential difference results from the current injected between the first and second electrodes. The third and fourth electrodes define a second electric lead field oriented between the third and fourth electrodes. The first and second electric lead fields converge near an assessment site within the body, but are substantially separated otherwise. An impedance value is calculated based on the potential difference and the current injection, and is used to assess a pathology near the assessment site.
摘要:
Changes in fluid volume in a thoracic region, such as the lung, are detected by internally injecting a current through the region, detecting an induced voltage on the skin of the patient, and calculating an impedance value. A method for performing such a measurement includes injecting an electrical current between first and second internal electrodes that are implanted in the body and that are positioned such that a portion of the injected current flows through at least a portion of the region. The method also includes measuring a voltage between first and second external electrodes attached to an external surface of the skin of the body. The measured voltage is induced by the injected current. The method also includes calculating an impedance by taking the ratio of the measured voltage and the injected current, wherein the calculated impedance is related to the volume of fluid in the region.
摘要:
An implantable medical device includes a housing for the implantable device that is sized for implantation in a chest region of a patient and includes a housing electrode. A left ventricular lead port is connectable to a proximal end of a lead having first and second insulated conductors that extend from the proximal end of the lead to corresponding first and second electrodes near a distal end of the lead. An electrical impedance measurement circuit is electrically connected to the left ventricular lead port and the housing electrode. The circuit may inject current between the first lead electrode and the housing electrode, and measure a voltage potential, created by the current injection, between the second lead electrode and the housing electrode. The ratio of the measured voltage to injected current may be used for assessing pulmonary edema. The lead electrodes may be located in a left ventricular coronary vein.
摘要:
A method and apparatus for measuring impedance for pathology assessment in a living being using convergent bioelectric lead fields is disclosed, including injecting a current between first and second electrodes implanted in a body of a living being, where the first and second electrodes define a first electric lead field oriented between the first and second electrodes. A potential difference is measured between third and fourth electrodes implanted in the body, where the potential difference results from the current injected between the first and second electrodes. The third and fourth electrodes define a second electric lead field oriented between the third and fourth electrodes. The first and second electric lead fields converge near an assessment site within the body, but are substantially separated otherwise. An impedance value is calculated based on the potential difference and the current injection, and is used to assess a pathology near the assessment site.
摘要:
An implantable medical device includes a housing for the implantable device that is sized for implantation in a chest region of a patient and includes a housing electrode. A left ventricular lead port is connectable to a proximal end of a lead having first and second insulated conductors that extend from the proximal end of the lead to corresponding first and second electrodes near a distal end of the lead. An electrical impedance measurement circuit is electrically connected to the left ventricular lead port and the housing electrode. The circuit may inject current between the first lead electrode and the housing electrode, and measure a voltage potential, created by the current injection, between the second lead electrode and the housing electrode. The ratio of the measured voltage to injected current may be used for assessing pulmonary edema. The lead electrodes may be located in a left ventricular coronary vein.
摘要:
An implantable medical device includes a housing for the implantable device that is sized for implantation in a chest region of a patient and includes a housing electrode. A left ventricular lead port is connectable to a proximal end of a lead having first and second insulated conductors that extend from the proximal end of the lead to corresponding first and second electrodes near a distal end of the lead. An electrical impedance measurement circuit is electrically connected to the left ventricular lead port and the housing electrode. The circuit may inject current between the first lead electrode and the housing electrode, and measure a voltage potential, created by the current injection, between the second lead electrode and the housing electrode. The ratio of the measured voltage to injected current may be used for assessing pulmonary edema. The lead electrodes may be located in a left ventricular coronary vein.
摘要:
A system for cutting marine grasses, weeds and other plant life to protect a propeller drive watercraft is disclosed. An adjustable, protective cutting edge to protect a propeller, drive shaft of a boat or other watercraft motor is further disclosed. A propeller protection device to mount upon a watercraft is further disclosed for optimizing the navigation of watercraft and reducing in-piloting maintenance of clearing plant matter from a propeller of a watercraft.