In-Scene Editing of Image Sequences
    1.
    发明申请
    In-Scene Editing of Image Sequences 审中-公开
    图像序列的现场编辑

    公开(公告)号:US20080178087A1

    公开(公告)日:2008-07-24

    申请号:US11625049

    申请日:2007-01-19

    CPC classification number: G06T13/20 G06T19/20 G06T2219/2016

    Abstract: Using in-scene editing, an added title, or object, moves as the camera moves through the imaged scene. Previously this has been complex to achieve, requiring expert users to explicitly align 3D coordinate systems in the image sequence and on the added title or object. For example, this has been used to add 3D objects into live-action footage in big-budget movies or advertising. A simple, easy to use system is described for achieving in-scene editing. A user specifies projection constraints by making 2D actions on one or more images in the image sequence. A 3D motion trajectory is computed for a 3D object model on the basis of the specified projection constraints and a smoothness indicator. Using the computed trajectory the 3D object model is added to the image sequence. Projection constraints may be added, amended or deleted to position the 3D object model and/or to animate it.

    Abstract translation: 使用场景编辑,添加的标题或对象,随着相机移动通过成像的场景而移动。 以前,这一点很复杂,要求专家用户明确地对齐图像序列中的3D坐标系和添加的标题或对象。 例如,这已被用于将3D对象添加到大型预算电影或广告中的实时影像中。 描述了一个简单易用的系统,用于实现现场编辑。 用户通过在图像序列中的一个或多个图像上进行2D动作来指定投影约束。 基于指定的投影约束和平滑指标,为3D对象模型计算3D运动轨迹。 使用计算的轨迹,将3D对象模型添加到图像序列中。 可以添加,修改或删除投影约束以定位3D对象模型和/或使其动画化。

    Foreground and background image segmentation
    2.
    发明授权
    Foreground and background image segmentation 有权
    前景和背景图像分割

    公开(公告)号:US08625897B2

    公开(公告)日:2014-01-07

    申请号:US12790026

    申请日:2010-05-28

    Abstract: Foreground and background image segmentation is described. In an example, a seed region is selected in a foreground portion of an image, and a geodesic distance is calculated from each image element to the seed region. A subset of the image elements having a geodesic distance less than a threshold is determined, and this subset of image elements are labeled as foreground. In another example, an image element from an image showing at least a user, a foreground object in proximity to the user, and a background is applied to trained decision trees to obtain probabilities of the image element representing one of these items, and a corresponding classification assigned to the image element. This is repeated for each image element. Image elements classified as belonging to the user are labeled as foreground, and image elements classified as foreground objects or background are labeled as background.

    Abstract translation: 描述了前景和背景图像分割。 在一个示例中,在图像的前景部分中选择种子区域,并且从每个图像元素计算到种子区域的测地距离。 确定具有小于阈值的测地距离的图像元素的子集,并且该图像元素的子集被标记为前景。 在另一示例中,将来自显示至少用户的图像,邻近用户的前景对象和背景的图像元素应用于经过训练的决策树,以获得表示这些项目之一的图像元素的概率,以及相应的 分类到图像元素的分类。 对于每个图像元素重复这一点。 分类为属于用户的图像元素被标记为前景,并且被分类为前景对象或背景的图像元素被标记为背景。

    Foreground and Background Image Segmentation
    3.
    发明申请
    Foreground and Background Image Segmentation 有权
    前景和背景图像分割

    公开(公告)号:US20110293180A1

    公开(公告)日:2011-12-01

    申请号:US12790026

    申请日:2010-05-28

    Abstract: Foreground and background image segmentation is described. In an example, a seed region is selected in a foreground portion of an image, and a geodesic distance is calculated from each image element to the seed region. A subset of the image elements having a geodesic distance less than a threshold is determined, and this subset of image elements are labeled as foreground. In another example, an image element from an image showing at least a user, a foreground object in proximity to the user, and a background is applied to trained decision trees to obtain probabilities of the image element representing one of these items, and a corresponding classification assigned to the image element. This is repeated for each image element. Image elements classified as belonging to the user are labeled as foreground, and image elements classified as foreground objects or background are labeled as background.

    Abstract translation: 描述了前景和背景图像分割。 在一个示例中,在图像的前景部分中选择种子区域,并且从每个图像元素计算到种子区域的测地距离。 确定具有小于阈值的测地距离的图像元素的子集,并且该图像元素的子集被标记为前景。 在另一示例中,将来自显示至少用户的图像,邻近用户的前景对象和背景的图像元素应用于经过训练的决策树,以获得表示这些项目之一的图像元素的概率,以及相应的 分类到图像元素的分类。 对于每个图像元素重复这一点。 分类为属于用户的图像元素被标记为前景,并且被分类为前景对象或背景的图像元素被标记为背景。

    Generating computer models of 3D objects
    4.
    发明授权
    Generating computer models of 3D objects 有权
    生成3D对象的计算机模型

    公开(公告)号:US09053571B2

    公开(公告)日:2015-06-09

    申请号:US13154288

    申请日:2011-06-06

    CPC classification number: G06T7/251 G06T17/10 G06T2200/08 G06T2207/10028

    Abstract: Generating computer models of 3D objects is described. In one example, depth images of an object captured by a substantially static depth camera are used to generate the model, which is stored in a memory device in a three-dimensional volume. Portions of the depth image determined to relate to the background are removed to leave a foreground depth image. The position and orientation of the object in the foreground depth image is tracked by comparison to a preceding depth image, and the foreground depth image is integrated into the volume by using the position and orientation to determine where to add data derived from the foreground depth image into the volume. In examples, the object is hand-rotated by a user before the depth camera. Hands that occlude the object are integrated out of the model as they do not move in sync with the object due to re-gripping.

    Abstract translation: 描述生成3D对象的计算机模型。 在一个示例中,使用由基本上静态的深度相机拍摄的对象的深度图像来生成存储在三维体积中的存储器设备中的模型。 确定与背景相关的深度图像的部分被去除以留下前景深度图像。 通过与前一个深度图像进行比较来跟踪前景深度图像中的对象的位置和方向,并且通过使用位置和方向来将前景深度图像集成到卷中,以确定在哪里添加从前景深度图像导出的数据 进入卷。 在示例中,该对象在深度相机之前由用户手动旋转。 闭合对象的手从模型中集成出来,因为它们不会因为重新抓取而与对象同步移动。

    Content-based information retrieval
    6.
    发明授权
    Content-based information retrieval 有权
    基于内容的信息检索

    公开(公告)号:US08346800B2

    公开(公告)日:2013-01-01

    申请号:US12417511

    申请日:2009-04-02

    CPC classification number: G06K9/6257 G06F17/30705 G06F17/3071

    Abstract: Content-based information retrieval is described. In an example, a query item such as an image, document, email or other item is presented and items with similar content are retrieved from a database of items. In an example, each time a query is presented, a classifier is formed based on that query and using a training set of items. For example, the classifier is formed in real-time and is formed in such a way that a limit on the proportion of the items in the database that will be retrieved is set. In an embodiment, the query item is analyzed to identify tokens in that item and subsets of those tokens are selected to form the classifier. For example, the subsets of tokens are combined using Boolean operators in a manner which is efficient for searching on particular types of database.

    Abstract translation: 描述基于内容的信息检索。 在一个示例中,呈现诸如图像,文档,电子邮件或其他项目的查询项目,并且从项目的数据库检索具有相似内容的项目。 在一个示例中,每次呈现查询时,基于该查询并使用项目的训练集形成分类器。 例如,分类器是实时形成的,并且以这样的方式形成:设置将要检索的数据库中的项目的比例的限制。 在一个实施例中,分析查询项目以识别该项目中的令牌,并且选择那些令牌的子集以形成分类器。 例如,使用布尔运算符组合令牌的子集,其方法对于在特定类型的数据库上进行搜索是有效的。

    SCANNER SYSTEM AND METHOD FOR SCANNING
    8.
    发明申请
    SCANNER SYSTEM AND METHOD FOR SCANNING 有权
    扫描仪系统和扫描方法

    公开(公告)号:US20090080036A1

    公开(公告)日:2009-03-26

    申请号:US12299349

    申请日:2007-05-03

    CPC classification number: G01B11/2518 G06K9/2036 G06K9/4661

    Abstract: A scanner system and corresponding method, the system comprising: a scanner device (1); a target 17) and a processor (21). The scanner device (1) comprises: an emitter (13) for projecting patterned light and a sensor (12) for capturing images of the object (19). The target (17) has predetermined features visible to the sensor simultaneously with the object for enabling the processor to determine the location of the sensor with respect to the object. The generates a three-dimensional model of the object on the basis of images of the object with the patterned light projected thereon. The scanner device further comprises a light source (14) for directionally illuminating the object (19), and the sensor (12) is arranged to capture images of the illuminated object. The processor generates sets of photometric data for the object when illuminated from different directions. The processor combines the geometric data and photometric data to output a model comprising geometric information on the object together with photometric information spatially registered with the geometric information.

    Abstract translation: 一种扫描仪系统和相应的方法,所述系统包括:扫描仪装置(1); 目标17)和处理器(21)。 扫描仪装置(1)包括:用于投射图案光的发射器(13)和用于捕获物体(19)的图像的传感器(12)。 目标(17)具有与物体同时可见的预定特征,使得处理器能够确定传感器相对于物体的位置。 基于投影在其上的图案光的对象的图像,生成对象的三维模型。 扫描器装置还包括用于定向照射物体(19)的光源(14),并且传感器(12)被布置成捕获被照射物体的图像。 当从不同方向照明时,处理器生成对象的测光数据集。 处理器组合几何数据和光度数据以输出包括物体上的几何信息的模型以及与几何信息在空间上注册的光度信息。

    Predicting Joint Positions
    10.
    发明申请
    Predicting Joint Positions 有权
    预测联合位置

    公开(公告)号:US20120239174A1

    公开(公告)日:2012-09-20

    申请号:US13050858

    申请日:2011-03-17

    CPC classification number: G06F3/017 G06K9/00362 G06N5/025

    Abstract: Predicting joint positions is described, for example, to find joint positions of humans or animals (or parts thereof) in an image to control a computer game or for other applications. In an embodiment image elements of a depth image make joint position votes so that for example, an image element depicting part of a torso may vote for a position of a neck joint, a left knee joint and a right knee joint. A random decision forest may be trained to enable image elements to vote for the positions of one or more joints and the training process may use training images of bodies with specified joint positions. In an example a joint position vote is expressed as a vector representing a distance and a direction of a joint position from an image element making the vote. The random decision forest may be trained using a mixture of objectives.

    Abstract translation: 例如,描述关节位置的描述是为了在图像中找到人或动物(或其部分)的联合位置,以控制计算机游戏或用于其他应用。 在一个实施例中,深度图像的图像元素进行联合位置投票,使得例如描绘躯干的一部分的图像元素可以投射颈部关节,左膝关节和右膝关节的位置。 可以对随机决策林进行训练,以使图像元素能够对一个或多个关节的位置进行投票,并且训练过程可以使用具有指定关节位置的身体的训练图像。 在一个例子中,联合立场表决被表示为表示从投票的图像元素的联合位置的距离和方向的向量。 可以使用目标混合来训练随机决策林。

Patent Agency Ranking