摘要:
The invention provides a stable lyophilized composition of 5,10 methylenetetrahydrofolate suitable for use in the treatment of cancer and other therapies. The composition comprises 5,10-MTHF in combination with citric acid and ascorbic acid, with the ratio of citric acid to ascorbic acid from about 0.75:1 to about 2.25:1 by weight, and the ratio of total citric acid and ascorbic acid to 5,10-MTHF from about 1.4:1 to about 3.4:1 by weight. Prior to lyophilization, the solution is adjusted to an essentially neutral pH.
摘要:
The present invention provides for an isolated polynucleotide sequence encoding a chimeric CD154, comprising a first nucleotide sequence encoding an extracellular subdomain of non-human CD154, preferably murine CD154, that replaces a cleavage site of human CD154, and a second nucleotide sequence encoding an extracellular subdomain of human CD154 that binds to a human CD154 receptor. The present invention also provides for the chimeric CD154 that is encoded by the above-described polynucleotide sequence, an expression vector and a genetic vector comprising the polynucleotide sequence, a host cell comprising the expression vector or the genetic vector, a process for producing the chimeric CD154, and methods for utilizing the expression vectors and genetic constructs containing the chimeric CD154 polynucleotide sequences.
摘要:
The present invention is directed to an isolated polynucleotide sequence encoding a chimeric TNFα, comprising a first nucleotide sequence encoding a domain or subdomain of a tumor necrosis factor ligand other than TNFα, wherein the encoded domain or subdomain replaces a cleavage site of native TNFα, and a second nucleotide sequence encoding a domain or subdomain of native TNFα that binds to a TNFα receptor. The encoded chimeric TNFα is significantly less susceptible to cleavage from the cellular surface and, as a result can increase the concentration of a ligand capable of binding to a TNFα receptor on the surface of a cell. The chimeric TNFα is therefore useful in methods for inducing apoptosis of a cell expressing a TNFα receptor, inducing activation of an immune system cell and treating neoplastic cells, by introducing into the cell of interest an isolated polynucleotide sequence encoding a chimeric TNFα that is expressed on the surface of the cell.
摘要:
The present invention provides for an isolated polynucleotide sequence encoding a chimeric CD154, comprising a first nucleotide sequence encoding an extracellular subdomain of non-human CD154, preferably murine CD154, that replaces a cleavage site of human CD154, and a second nucleotide sequence encoding an extracellular subdomain of human CD154 that binds to a human CD154 receptor. The present invention also provides for the chimeric CD154 that is encoded by the above-described polynucleotide sequence, an expression vector and a genetic vector comprising the polynucleotide sequence, a host cell comprising the expression vector or the genetic vector, a process for producing the chimeric CD154, and methods for utilizing the expression vectors and genetic constructs containing the chimeric CD154 polynucleotide sequences.
摘要:
The present invention is directed to an isolated polynucleotide sequence encoding a chimeric TNFα, comprising a first nucleotide sequence encoding a domain or subdomain of a tumor necrosis factor ligand other than TNFα, wherein the encoded domain or subdomain replaces a cleavage site of native TNFα, and a second nucleotide sequence encoding a domain or subdomain of native TNFα that binds to a TNFα receptor. The encoded chimeric TNFα is significantly less susceptible to cleavage from the cellular surface and, as a result can increase the concentration of a ligand capable of binding to a TNFα receptor on the surface of a cell. The chimeric TNFα is therefore useful in methods for inducing apoptosis of a cell expressing a TNFα receptor, inducing activation of an immune system cell and treating neoplastic cells, by introducing into the cell of interest an isolated polynucleotide sequence encoding a chimeric TNFα that is expressed on the surface of the cell.
摘要:
The present invention provides for an isolated polynucleotide sequence encoding a chimeric CD154, comprising a first nucleotide sequence encoding an extracellular subdomain of non-human CD154, preferably murine CD154, that replaces a cleavage site of human CD154, and a second nucleotide sequence encoding an extracellular subdomain of human CD154 that binds to a human CD154 receptor. The present invention also provides for the chimeric CD154 that is encoded by the above-described polynucleotide sequence, an expression vector and a genetic vector comprising the polynucleotide sequence, a host cell comprising the expression vector or the genetic vector, a process for producing the chimeric CD154, and methods for utilizing the expression vectors and genetic constructs containing the chimeric CD154 polynucleotide sequences.
摘要:
The present invention provides for an isolated polynucleotide sequence encoding a chimeric CD154, comprising a first nucleotide sequence encoding an extracellular subdomain of non-human CD154, preferably murine CD154, that replaces a cleavage site of human CD154, and a second nucleotide sequence encoding an extracellular subdomain of human CD154 that binds to a human CD154 receptor. The present invention also provides for the chimeric CD154 that is encoded by the above-described polynucleotide sequence, an expression vector and a genetic vector comprising the polynucleotide sequence, a host cell comprising the expression vector or the genetic vector, a process for producing the chimeric CD154, and methods for utilizing the expression vectors and genetic constructs containing the chimeric CD154 polynucleotide sequences.
摘要:
The present invention is directed to an isolated polynucleotide sequence encoding a chimeric TNFα, comprising a first nucleotide sequence encoding a domain or subdomain of a tumor necrosis factor ligand other than TNFα, wherein the encoded domain or subdomain replaces a cleavage site of native TNFα, and a second nucleotide sequence encoding a domain or subdomain of native TNFα that binds to a TNFα receptor. The encoded chimeric TNFα is significantly less susceptible to cleavage from the cellular surface and, as a result can increase the concentration of a ligand capable of binding to a TNFα receptor on the surface of a cell. The chimeric TNFα is therefore useful in methods for inducing apoptosis of a cell expressing a TNFα receptor, inducing activation of an immune system cell and treating neoplastic cells, by introducing into the cell of interest an isolated polynucleotide sequence encoding a chimeric TNFα that is expressed on the surface of the cell.
摘要:
The present invention is directed to an isolated polynucleotide sequence encoding a chimeric TNFα and chimeric TNFα polypeptides. The former have a first nucleotide sequence encoding a domain or subdomain of a tumor necrosis factor ligand other than TNFα, wherein the encoded domain or subdomain lacks a cleavage site, and a second nucleotide sequence encoding a domain or subdomain of native TNFα that binds to a TNFα receptor. The encoded chimeric TNFα is significantly less susceptible to cleavage from the cellular surface and, as a result can increase the concentration of a ligand capable of binding to a TNFα receptor on the surface of a cell. The chimeric TNFα is therefore useful in methods for inducing apoptosis of a cell expressing a TNFα receptor, inducing activation of an immune system cell and treating neoplastic cells, by introducing into the cell of interest an isolated polynucleotide sequence encoding a chimeric TNFα that is expressed on the surface of the cell.