摘要:
The present invention provides for an isolated polynucleotide sequence encoding a chimeric CD154, comprising a first nucleotide sequence encoding an extracellular subdomain of non-human CD154, preferably murine CD154, that replaces a cleavage site of human CD154, and a second nucleotide sequence encoding an extracellular subdomain of human CD154 that binds to a human CD154 receptor. The present invention also provides for the chimeric CD154 that is encoded by the above-described polynucleotide sequence, an expression vector and a genetic vector comprising the polynucleotide sequence, a host cell comprising the expression vector or the genetic vector, a process for producing the chimeric CD154, and methods for utilizing the expression vectors and genetic constructs containing the chimeric CD154 polynucleotide sequences.
摘要:
The present invention is directed to an isolated polynucleotide sequence encoding a chimeric TNFα, comprising a first nucleotide sequence encoding a domain or subdomain of a tumor necrosis factor ligand other than TNFα, wherein the encoded domain or subdomain replaces a cleavage site of native TNFα, and a second nucleotide sequence encoding a domain or subdomain of native TNFα that binds to a TNFα receptor. The encoded chimeric TNFα is significantly less susceptible to cleavage from the cellular surface and, as a result can increase the concentration of a ligand capable of binding to a TNFα receptor on the surface of a cell. The chimeric TNFα is therefore useful in methods for inducing apoptosis of a cell expressing a TNFα receptor, inducing activation of an immune system cell and treating neoplastic cells, by introducing into the cell of interest an isolated polynucleotide sequence encoding a chimeric TNFα that is expressed on the surface of the cell.
摘要:
The present invention is directed to an isolated polynucleotide sequence encoding a chimeric TNFα and chimeric TNFα polypeptides. The former have a first nucleotide sequence encoding a domain or subdomain of a tumor necrosis factor ligand other than TNFα, wherein the encoded domain or subdomain lacks a cleavage site, and a second nucleotide sequence encoding a domain or subdomain of native TNFα that binds to a TNFα receptor. The encoded chimeric TNFα is significantly less susceptible to cleavage from the cellular surface and, as a result can increase the concentration of a ligand capable of binding to a TNFα receptor on the surface of a cell. The chimeric TNFα is therefore useful in methods for inducing apoptosis of a cell expressing a TNFα receptor, inducing activation of an immune system cell and treating neoplastic cells, by introducing into the cell of interest an isolated polynucleotide sequence encoding a chimeric TNFα that is expressed on the surface of the cell.
摘要:
The present invention is directed to an isolated polynucleotide sequence encoding a chimeric TNFα, comprising a first nucleotide sequence encoding a domain or subdomain of a tumor necrosis factor ligand other than TNFα, wherein the encoded domain or subdomain replaces a cleavage site of native TNFα, and a second nucleotide sequence encoding a domain or subdomain of native TNFα that binds to a TNFα receptor. The encoded chimeric TNFα is significantly less susceptible to cleavage from the cellular surface and, as a result can increase the concentration of a ligand capable of binding to a TNFα receptor on the surface of a cell. The chimeric TNFα is therefore useful in methods for inducing apoptosis of a cell expressing a TNFα receptor, inducing activation of an immune system cell and treating neoplastic cells, by introducing into the cell of interest an isolated polynucleotide sequence encoding a chimeric TNFα that is expressed on the surface of the cell.
摘要:
The present invention provides for an isolated polynucleotide sequence encoding a chimeric CD154, comprising a first nucleotide sequence encoding an extracellular subdomain of non-human CD154, preferably murine CD154, that replaces a cleavage site of human CD154, and a second nucleotide sequence encoding an extracellular subdomain of human CD154 that binds to a human CD154 receptor. The present invention also provides for the chimeric CD154 that is encoded by the above-described polynucleotide sequence, an expression vector and a genetic vector comprising the polynucleotide sequence, a host cell comprising the expression vector or the genetic vector, a process for producing the chimeric CD154, and methods for utilizing the expression vectors and genetic constructs containing the chimeric CD154 polynucleotide sequences.
摘要:
The present invention is directed to an isolated polynucleotide sequence encoding a chimeric TNFα, comprising a first nucleotide sequence encoding a domain or subdomain of a tumor necrosis factor ligand other than TNFα, wherein the encoded domain or subdomain replaces a cleavage site of native TNFα, and a second nucleotide sequence encoding a domain or subdomain of native TNFα that binds to a TNFα receptor. The encoded chimeric TNFα is significantly less susceptible to cleavage from the cellular surface and, as a result can increase the concentration of a ligand capable of binding to a TNFα receptor on the surface of a cell. The chimeric TNFα is therefore useful in methods for inducing apoptosis of a cell expressing a TNFα receptor, inducing activation of an immune system cell and treating neoplastic cells, by introducing into the cell of interest an isolated polynucleotide sequence encoding a chimeric TNFα that is expressed on the surface of the cell.
摘要:
The present invention provides for an isolated polynucleotide sequence encoding a chimeric CD154, comprising a first nucleotide sequence encoding an extracellular subdomain of non-human CD154, preferably murine CD154, that replaces a cleavage site of human CD154, and a second nucleotide sequence encoding an extracellular subdomain of human CD154 that binds to a human CD154 receptor. The present invention also provides for the chimeric CD154 that is encoded by the above-described polynucleotide sequence, an expression vector and a genetic vector comprising the polynucleotide sequence, a host cell comprising the expression vector or the genetic vector, a process for producing the chimeric CD154, and methods for utilizing the expression vectors and genetic constructs containing the chimeric CD154 polynucleotide sequences.
摘要:
The present invention provides for an isolated polynucleotide sequence encoding a chimeric CD154, comprising a first nucleotide sequence encoding an extracellular subdomain of non-human CD154, preferably murine CD154, that replaces a cleavage site of human CD154, and a second nucleotide sequence encoding an extracellular subdomain of human CD154 that binds to a human CD154 receptor. The present invention also provides for the chimeric CD154 that is encoded by the above-described polynucleotide sequence, an expression vector and a genetic vector comprising the polynucleotide sequence, a host cell comprising the expression vector or the genetic vector, a process for producing the chimeric CD154, and methods for utilizing the expression vectors and genetic constructs containing the chimeric CD154 polynucleotide sequences.
摘要:
Methods for detection of any antibody utilizing a standardized approach applicable to any antibody which provides highly specific assays specific for individual or multiple antibodies. The methods enable improved pharmacokinetic analysis during development and clinical use of antibody-based therapies as well as determination of diagnostic and/or prognostic factors.
摘要:
Therapeutic antibodies having binding specificity for ROR-1 expressed on cancer cells (particularly leukemic and lymphomic cells) and pharmaceutical compositions containing one or more such antibodies for use in treating cancer. Methods for diagnosing such cancers through in vitro detection of binding to ROR-1 protein expressed on putative cancer cells are also provided.