摘要:
A task-based multi-process design synthesis methodology relies on a plurality of child processes to assist a parent process in performing optimizations on an integrated circuit design. Objects from an integrated circuit design are grouped into subsets and assigned to child processes, with each child process performing a transform on each of the objects in the subset assigned to that child process and determining which of the objects in the subset are candidate objects for which performance of the transform has been successful. The child processes then notify the parent process of those objects that qualify as candidate objects, so that the parent process only has to perform the transform on the candidate objects, thereby relieving the parent process from the overhead associated with performing the transform on non-candidate objects for which the transform has been determined by the child processes as not being successful.
摘要:
A task-based multi-process design synthesis methodology relies on a plurality of child processes to assist a parent process in performing optimizations on an integrated circuit design. Objects from an integrated circuit design are grouped into subsets and assigned to child processes, with each child process performing a transform on each of the objects in the subset assigned to that child process and determining which of the objects in the subset are candidate objects for which performance of the transform has been successful. The child processes then notify the parent process of those objects that qualify as candidate objects, so that the parent process only has to perform the transform on the candidate objects, thereby relieving the parent process from the overhead associated with performing the transform on non-candidate objects for which the transform has been determined by the child processes as not being successful.
摘要:
A task-based multi-process design synthesis methodology is reproducible, and relies on a plurality of child processes to assist a parent process in performing optimizations on an integrated circuit design. Objects from an integrated circuit design are grouped into subsets and assigned to child processes, with each child process performing a transform on each of the objects in the subset assigned to that child process and determining which of the objects in the subset are candidate objects for which performance of the transform has been successful. Each child process also undoes the transform performed for each object such that the same initial state of the integrated circuit design is used to perform each transform. In addition, the parent process tracks the results of performing the transform by each child process, and applies successful transforms in a controlled sequence.
摘要:
A task-based multi-process design synthesis methodology is reproducible, and relies on a plurality of child processes to assist a parent process in performing optimizations on an integrated circuit design. Objects from an integrated circuit design are grouped into subsets and assigned to child processes, with each child process performing a transform on each of the objects in the subset assigned to that child process and determining which of the objects in the subset are candidate objects for which performance of the transform has been successful. Each child process also undoes the transform performed for each object such that the same initial state of the integrated circuit design is used to perform each transform. In addition, the parent process tracks the results of performing the transform by each child process, and applies successful transforms in a controlled sequence.
摘要:
Global routing congestion in an integrated circuit design is characterized by computing global edge congestions and constructing a histogram of averages of the global edge congestions for varying percentages of worst edge congestion, e.g., 0.5%, 1%, 2%, 5%, 10% and 20%. Horizontal and vertical global edges are handled separately. Global edges near blockages can be skipped to avoid false congestion hotspots. The histogram of the current global routing can be compared to a histogram for a previous global routing to select a best routing solution. The histograms can also be used in conjunction with congestion-driven physical synthesis tools.
摘要:
A computer implemented method, data processing system, and computer program product for reworking a plurality of cells initially placed in a circuit design. An expander allocates cells to tiles. The expander determines a high detailed routing cost tile class, wherein the high detailed routing cost tile class is a class of tiles that has high detailed routing costs. The expander selects a cell within a tile of the high detailed routing cost tile class to form a selected cell in a selected tile. The expander applies multiple techniques to reposition these cells at new locations to improve the detailed routability. The expander can place an expanded bounding box around the selected cell, wherein the bounding box extends to at least one tile adjacent the selected tile, and repositions the selected cell within the bounding box to form a modified design to improve the detailed routability. The expander may also inflate and legalize those cells.
摘要:
Global routing congestion in an integrated circuit design is characterized by computing global edge congestions and constructing a histogram of averages of the global edge congestions for varying percentages of worst edge congestion, e.g., 0.5%, 1%, 2%, 5%, 10% and 20%. Horizontal and vertical global edges are handled separately. Global edges near blockages can be skipped to avoid false congestion hotspots. The histogram of the current global routing can be compared to a histogram for a previous global routing to select a best routing solution. The histograms can also be used in conjunction with congestion-driven physical synthesis tools.
摘要:
A computer implemented method, data processing system, and computer program product for reworking a plurality of cells initially placed in a circuit design. An expander allocates cells to tiles. The expander determines a high detailed routing cost tile class, wherein the high detailed routing cost tile class is a class of tiles that has high detailed routing costs. The expander selects a cell within a tile of the high detailed routing cost tile class to form a selected cell in a selected tile. The expander applies multiple techniques to reposition these cells at new locations to improve the detailed routability. The expander can place an expanded bounding box around the selected cell, wherein the bounding box extends to at least one tile adjacent the selected tile, and repositions the selected cell within the bounding box to form a modified design to improve the detailed routability. The expander may also inflate and legalize those cells.