摘要:
Disclosed is a process for non-catalytically removing NO from combustion effluent streams at temperatures from about 1300.degree. K. to 1600.degree. K. by injecting ammonia into a combustion effluent stream at a point where the stream is cooling at a rate of at least about 250.degree. K./sec, wherein the amount of ammonia injected and its point of injection are determined by the solution of a set of simultaneous equations derived from the kinetic model of Table I hereof.
摘要:
Disclosed is a method for non-catalytically reducing the concentration of NO in combustion effluents by the injection of ammonia into an effluent stream where the stream is at a temperature from about 975.degree. K. to 1300.degree. K. More particularly, the amount of NH.sub.3 and its point of injection are determined by the solution of a set of simultaneous equations derived from the kinetic model disclosed herein. Particular benefits of the present invention occur when ammonia is injected into a cooling zone.
摘要:
Disclosed is a process for non-catalytically removing NO from combustion effluent streams at temperatures from about 1300.degree. K. to 1600.degree. K. by injecting ammonia immediately before or directly into a zone where the combustion effluent is cooling at a rate of at least about 250.degree. K.
摘要:
Disclosed is a method for non-catalytically reducing the amount of NO emitted from gas turbines. The method involves contacting condition effluents of the gas turbine with ammonia, replacing at least a portion of the secondary air used to dilute and cool the combustion effluents with an inert gas, such as exhaust gas from the gas turine. The temperature of the combustion effluents, the time between contacting the combustion effluents with ammonia and passage through the turbine blades, and the amount of ammonia employed is determined by the solution of the set of simultaneous equations derived from the kinetic model disclosed herein.
摘要:
The invention is a process for hydroformylating multicomponent syngas feed streams containing CO, H.sub.2, C.sub.2 to C.sub.5 olefins and mixtures thereof and C.sub.2 to C.sub.5 alkynes and mixtures thereof by contacting the multicomponent syngas feed stream with a solution of an oil soluble rhodium complex catalyst produced by complexing in solution a low valence Rh and an oil soluble triorganophoshorous compound wherein the catalyst has a P/Rh ratio of at least 30, a concentration of Rh in solution from about 1 to about 1000 ppm by weight, a total concentration of coordinatively active P of at least about 0.01 mol/l, and a ratio of [P]/p.sub.co of at least 0.1 mmol/l/kPa, wherein [P] is the total concentration of coordinatively active phosphorous in the solution, and p.sub.co is the partial pressure of CO, to produce the corresponding C.sub.3 to C.sub.6 aldehydes. The process has utility for the hydroformylation of streams that contain olefins and alkynes.
摘要:
The invention is a process for production of C.sub.3 to C.sub.6 aldehydes by hydroformylating a mixture containing: (a) C.sub.2 to C.sub.5 olefins and mixtures thereof, and (b) (i) C.sub.2 to C.sub.5 alkynes and mixtures thereof or (ii) C.sub.3 to C.sub.5 cumulated dienes and mixtures thereof or (iii) mixtures of (i) and (ii), with CO, H.sub.2 and a solution of a rhodium complex catalyst produced by complexing Rh and an organophosphorus compound at a concentration of Rh in solution from 1 to 1000 ppm by weight. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio of at least 30. Alternatively, the solution of rhodium complex catalyst can have a P/Rh atom ratio greater than the value R.sub.L defined by the formula: ##EQU1## in which R.sub.B is the P/Rh ratio sufficient for a catalytically active Rh complex, pKa.sub.TPP is the pKa value for triphenylphosphine, pKa.sub.L is the pKa value for the triorganophosphorus compound, R is the gas constant, and .DELTA.S.sub.B is 35(N-1) cal/mole/.degree.K., N is the number of P-Rh attachments per ligand molecule. The process has utility for the hydroformylation of streams that contain olefins and alkynes.
摘要:
Disclosed is an improved non-catalytic combustion process for reducing NO emissions to the atmosphere wherein a reducing gas comprising ammonia, either alone or in combination with one or more other reducing gases, is injected into a flowing combustion effluent containing NO and oxygen when at least a portion of the combustion effluent is in a reduction zone at a temperature within the range of about 700.degree. C. to about 1100.degree. C., the improvement which comprises placing a metallic material substantially at the end of the reduction zone to substantially reduce ammonia breakthrough.
摘要:
The invention is related to fuels having a high laminar flame speed and particular distillation characteristics. More particularly, the invention is directed towards fuels containing at least one species having a laminar flame speed greater than isooctane's laminar flame speed and specific distillation characteristics including T50, FBP, IBP.
摘要:
In its simplest sense, the present invention is directed toward a process for the thermal conversion of methane into unsaturated gaseous hydrocarbons, especially olefins, comprising first compressing methane in the presence of an inert gas having a higher ratio of heat capacities, Cp/Cv, than methane. The inert gas used is present in an amount sufficient to provide a compressed gas mixture having a peak temperature of adiabatic compression in the range of about 900.degree. C. to about 2200.degree. C. Under these conditions, at least some of the methane is converted to unsaturated gaseous hydrocarbons. Immediately thereafter, the compressed gas mixture is expanded, thereby substantially preventing thermal conversion of the gaseous hydrocarbons. Importantly, the compression and expansion are achieved in a single cycle of less than about one second.