摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
By providing a test structure for evaluating the patterning process and/or the epitaxial growth process for forming embedded semiconductor alloys in sophisticated semiconductor devices, enhanced statistical relevance in combination with reduced test time may be accomplished.
摘要:
Performance of P-channel transistors may be enhanced on the basis of an embedded strain-inducing semiconductor alloy by forming a gate electrode structure on the basis of a high-k dielectric material in combination with a metal-containing cap layer in order to obtain an undercut configuration of the gate electrode structure. Consequently, the strain-inducing semiconductor alloy may be formed on the basis of a sidewall spacer of minimum thickness in order to position the strain-inducing semiconductor material closer to a central area of the channel region.
摘要:
Performance of P-channel transistors may be enhanced on the basis of an embedded strain-inducing semiconductor alloy by forming a gate electrode structure on the basis of a high-k dielectric material in combination with a metal-containing cap layer in order to obtain an undercut configuration of the gate electrode structure. Consequently, the strain-inducing semiconductor alloy may be formed on the basis of a sidewall spacer of minimum thickness in order to position the strain-inducing semiconductor material closer to a central area of the channel region.
摘要:
In sophisticated semiconductor devices, an asymmetric transistor configuration may be obtained on the basis of an asymmetric well implantation while avoiding a tilted implantation process. For this purpose, a graded implantation mask may be formed, such as a graded resist mask, which may have a higher ion blocking capability at the drain side compared to the source side of the asymmetric transistor. For instance, the asymmetric configuration may be obtained on the basis of a non-tilted implantation process with a high degree of performance gain and may be accomplished irrespective of the technology standard under consideration.
摘要:
In sophisticated semiconductor devices, an asymmetric transistor configuration may be obtained on the basis of an asymmetric well implantation while avoiding a tilted implantation process. For this purpose, a graded implantation mask may be formed, such as a graded resist mask, which may have a higher ion blocking capability at the drain side compared to the source side of the asymmetric transistor. For instance, the asymmetric configuration may be obtained on the basis of a non-tilted implantation process with a high degree of performance gain and may be accomplished irrespective of the technology standard under consideration.