摘要:
Techniques for minimizing coprocessor “starvation,” and for effectively scheduling processing in a coprocessor for greater efficiency and power. A run list is provided allowing a coprocessor to switch from one task to the next, without waiting for CPU intervention. A method called “surface faulting” allows a coprocessor to fault at the beginning of a large task rather than somewhere in the middle of the task. DMA control instructions, namely a “fence,” a “trap” and a “enable/disable context switching,” can be inserted into a processing stream to cause a coprocessor to perform tasks that enhance coprocessor efficiency and power. These instructions can also be used to build high-level synchronization objects. Finally, a “flip” technique is described that can switch a base reference for a display from one location to another, thereby changing the entire display surface.
摘要:
Techniques for minimizing coprocessor “starvation,” and for effectively scheduling processing in a coprocessor for greater efficiency and power. A run list is provided allowing a coprocessor to switch from one task to the next, without waiting for CPU intervention. A method called “surface faulting” allows a coprocessor to fault at the beginning of a large task rather than somewhere in the middle of the task. DMA control instructions, namely a “fence,” a “trap” and a “enable/disable context switching,” can be inserted into a processing stream to cause a coprocessor to perform tasks that enhance coprocessor efficiency and power. These instructions can also be used to build high-level synchronization objects. Finally, a “flip” technique is described that can switch a base reference for a display from one location to another, thereby changing the entire display surface.
摘要:
Systems and methods that independently control divided and/or isolated processing resources of a Graphical Processing Unit (GPU). Synchronization primitives for processing are shared among such resources to process interaction with the engines and their associated different requirements (e.g. different language). Accordingly, independent threads can be created against particular nodes (e.g., a video engine node, 3D engine node), wherein multiple engines can exist under a single node, and independent control can subsequently be exerted upon the plurality of engines associated with the GPU.
摘要:
Systems and methods are provided for scheduling the processing of a coprocessor whereby applications can submit tasks to a scheduler, and the scheduler can determine how much processing each application is entitled to as well as an order for processing. In connection with this process, tasks that require processing can be stored in physical memory or in virtual memory that is managed by a memory manager. The invention also provides various techniques of determining whether a particular task is ready for processing. A “run list” may be employed to ensure that the coprocessor does not waste time between tasks or after an interruption. The invention also provides techniques for ensuring the security of a computer system, by not allowing applications to modify portions of memory that are integral to maintaining the proper functioning of system operations.
摘要:
Systems and methods for scheduling coprocessing resources in a computing system are provided without redesigning the coprocessor. In various embodiments, a system of preemptive multitasking is provided achieving benefits over cooperative multitasking by any one or more of (1) executing rendering commands sent to the coprocessor in a different order than they were submitted by applications; (2) preempting the coprocessor during scheduling of non-interruptible hardware; (3) allowing user mode drivers to build work items using command buffers in a way that does not compromise security; (4) preparing DMA buffers for execution while the coprocessor is busy executing a previously prepared DMA buffer; (5) resuming interrupted DMA buffers; and (6) reducing the amount of memory needed to run translated DMA buffers.
摘要:
Techniques for minimizing coprocessor “starvation,” and for effectively scheduling processing in a coprocessor for greater efficiency and power. A run list is provided allowing a coprocessor to switch from one task to the next, without waiting for CPU intervention. A method called “surface faulting” allows a coprocessor to fault at the beginning of a large task rather than somewhere in the middle of the task. DMA control instructions, namely a “fence,” a “trap” and a “enable/disable context switching,” can be inserted into a processing stream to cause a coprocessor to perform tasks that enhance coprocessor efficiency and power. These instructions can also be used to build high-level synchronization objects. Finally, a “flip” technique is described that can switch a base reference for a display from one location to another, thereby changing the entire display surface.
摘要:
Systems and methods are provided for scheduling the processing of a coprocessor whereby applications can submit tasks to a scheduler, and the scheduler can determine how much processing each application is entitled to as well as an order for processing. In connection with this process, tasks that require processing can be stored in physical memory or in virtual memory that is managed by a memory manager. The invention also provides various techniques of determining whether a particular task is ready for processing. A “run list” may be employed to ensure that the coprocessor does not waste time between tasks or after an interruption. The invention also provides techniques for ensuring the security of a computer system, by not allowing applications to modify portions of memory that are integral to maintaining the proper functioning of system operations.
摘要:
Systems and methods are provided for scheduling the processing of a coprocessor whereby applications can submit tasks to a scheduler, and the scheduler can determine how much processing each application is entitled to as well as an order for processing. In connection with this process, tasks that require processing can be stored in physical memory or in virtual memory that is managed by a memory manager. The invention also provides various techniques of determining whether a particular task is ready for processing. A “run list” may be employed to ensure that the coprocessor does not waste time between tasks or after an interruption. The invention also provides techniques for ensuring the security of a computer system, by not allowing applications to modify portions of memory that are integral to maintaining the proper functioning of system operations.
摘要:
Systems and methods that independently control divided and/or isolated processing resources of a Graphical Processing Unit (GPU). Synchronization primitives for processing are shared among such resources to process interaction with the engines and their associated different requirements (e.g. different language). Accordingly, independent threads can be created against particular nodes (e.g., a video engine node, 3D engine node), wherein multiple engines can exist under a single node, and independent control can subsequently be exerted upon the plurality of engines associated with the GPU.
摘要:
A method for tile-based rendering of content. Content may be rendered in a memory region organized as multiple tiles. In scenarios in which content is generated in layers, for operations that involve compositing image layers, an order in which portions of the image are processed may be selected to reduce the aggregate number of memory accesses times, which in turn may improve the performance of a computer that uses tile-based rendering. An image may be processed such that operations relating to rendering portions of different layers corresponding to the same tile are performed sequentially. Such processing may be used in a computer with a graphics processing unit that supports tile-based rendering, and may be particularly well suited for computers with a slate form factor. An interface to a graphics processing utility within the computer may provide a flag to allow an application to specify whether operations may be reordered.