摘要:
The present invention provides a versatile system for optimizing data fragmentation in a digital communications—particularly OFDM communications—system. A digital transmission system (100) is provided, having a PHY-level constraint. An array (104, 112) of data transmission parameters (106-110, 114-116), relating to the digital transmission system, is provided. A fragmentation construct (102) is provided, and adapted to determine a number of symbols required to transmit a given data transmission payload. The fragmentation construct calculates (118), based on the number symbols required, and on certain parameter information from the array, a number of bytes of data that must be transmitted in the given data transmission payload in order to minimize pad bits added to the data transmission payload.
摘要:
In at least some embodiments, a method for mitigating interference between an Ultra Wideband (UWB) device and a non-UWB device is provided. The method includes, dynamically determining if a frequency channel associated with the non-UWB device is being used. If the frequency channel is being used, the method adjusts a UWB frequency band used for UWB signal transmission.
摘要:
The present disclosure is directed to a transmitter 200 that includes a first block encoder 450 operable to block encode at least a first portion of a multi-band orthogonal frequency division modulation signal. The transmitter 200 also includes a convolution encoder 304 operable to convolution encode the output of the first block encoder 450. A method of communicating is also disclosed. The method comprises block encoding a first portion of a message to produce a first outer code word. The method includes convolution encoding the first outer code word to produce a first inner code word. The method also includes transmitting the first inner code word as part of a multi-band orthogonal frequency division modulation signal.
摘要:
This specification describes several improvements to the Multiband OFDM (MB-OFDM) Physical Layer. A new PLCP frame format that better supports interoperability between 3-band and 7-band modes is described. An expanded PHY header is described with more reserved bits for future enhancements, an even number of OFDM symbols for the PLCP header that better supports time spreading and that the information is limited to just 2 OFDM symbols. A zero prefix is used to eliminate ripe in the transmitted spectrum so there is no back off required at the transmitter. A length 160 hierarchical sequence for the packet synchronization sequence is used to help eliminate the artificial side-lobe that is created during the correlation process at the receiver with the current length 128 hierarchical packet synchronization sequence.
摘要:
In at least some embodiments, a method for mitigating interference between an Ultra Wideband (UWB) device and a non-UWB device is provided. The method includes, dynamically determining if a frequency channel associated with the non-UWB device is being used. If the frequency channel is being used, the method adjusts a UWB frequency band used for UWB signal transmission.
摘要:
The present invention provides a versatile system for selectively altering or shaping transmission signals in an ultra-wideband communications system (100). The system provides a serial to parallel conversion function (102) with a serial data input (116). The serial to parallel conversion function converts the serial data and outputs it in parallel format. An adjustment function (104) receives the now parallel data and selectively alters the parallel data responsive to some code or vector (118). A frequency-to-time-domain conversion function (106) receives the selectively altered parallel data and transmits it to a parallel-to-serial conversion function 108. The now serial data transfer through an OFDM prefix/suffix function 110 and a digital-to-analog conversion function 112, to an up conversion mixer function 114. Encoded digital data bits are input, converted to parallel format, and passed to the spectrum adjustment function, which provides selective adjustment of specific data units (i.e., specific OFDM sub-carriers or tones).
摘要:
A system is provided that includes a first device 110A that transmits an information symbol with a zero-padded suffix (ZPS) and a second device 110B that receives the information symbol with the zero-padded suffix. The second device 110B performs a Fourier transform on at least one sample of the information symbol before a ZPS sample is overlapped-and-added to another sample of the information symbol.
摘要:
The present invention provides a versatile system for optimizing data fragmentation in a digital communications—particularly OFDM communications—system. A digital transmission system (100) is provided, having a PHY-level constraint. An array (104, 112) of data transmission parameters (106-110, 114-116), relating to the digital transmission system, is provided. A fragmentation construct (102) is provided, and adapted to determine a number of symbols required to transmit a given data transmission payload. The fragmentation construct calculates (118), based on the number symbols required, and on certain parameter information from the array, a number of bytes of data that must be transmitted in the given data transmission payload in order to minimize pad bits added to the data transmission payload.
摘要:
Communications systems are disclosed which comprise system and methods which, in some embodiments, include a data input; a decoding function, which is adapted to receive a first data element and a second data element from the data input and decode the first data element and second data element, and a mapping element, which is adapted to map the first data element and second data element onto two constellations.
摘要:
A system is provided that includes a first device 110A that transmits an information symbol with a zero-padded suffix (ZPS) and a second device 110B that receives the information symbol with the zero-padded suffix. The second device 110B performs a Fourier transform on at least one sample of the information symbol before a ZPS sample is overlapped-and-added to another sample of the information symbol.