Abstract:
Systems and methods for decoupling the electrical and mechanical functionality of a depressible key are disclosed. The depressible key can include a non-contact proximity sensor, such as an optical sensor, to detect motion of the keycap. The output from the optical sensor is used to determine a distance, velocity, acceleration, and a force applied during a keypress.
Abstract:
Disclosed herein is an input device having adjustable input mechanisms. The input mechanisms of the input device may be dynamically adjusted based on one or more input characteristics associated with a user. Accordingly, the input device may be customized to fit a user's input preferences.
Abstract:
An input device for an electronic device includes an enclosure and a top member defining an input surface having multiple differentiated input regions. The input device further includes a first force sensing system associated with a first area of the top member and including a first group of the differentiated input regions, and a second force sensing system associated with a second area of the top member and including a second group of the differentiated input regions. The input device further includes a touch sensing system configured to determine which input region from the first group of the differentiated input regions corresponds to the first force input and to determine which input region from the second group of the differentiated input regions corresponds to the second force input.
Abstract:
An input device for an electronic device includes an enclosure and a top member defining an input surface having multiple differentiated input regions. The input device further includes a first force sensing system associated with a first area of the top member and including a first group of the differentiated input regions, and a second force sensing system associated with a second area of the top member and including a second group of the differentiated input regions. The input device further includes a touch sensing system configured to determine which input region from the first group of the differentiated input regions corresponds to the first force input and to determine which input region from the second group of the differentiated input regions corresponds to the second force input.
Abstract:
Disclosed herein is a multifunction input device, such as, a keyboard. The multifunction input device has a capacitive sensing layer that enables a user to use the multifunction input device as standard keyboard and also as a touch sensitive surface such as, for example, a trackpad.
Abstract:
A force sensor for detecting a force on a surface of a device. The force sensor may include a force-receiving layer and a substrate disposed below the force-receiving layer. A first force-sensitive component may be disposed on a surface of the substrate, and a second force-sensitive component may be disposed proximate to the first force-sensitive component. In some embodiments, sensor circuitry may be operatively coupled to the first and second force-sensitive components, and configured to compare a relative electrical response between the first force-sensitive component and the second force-sensitive component to compute a force estimate. The force estimate may compensate for a variation in response based on the location of the components relative to a location of the force.
Abstract:
Disclosed herein is an input device having adjustable input mechanisms. The input mechanisms of the input device may be dynamically adjusted based on one or more input characteristics associated with a user. Accordingly, the input device may be customized to fit a user's input preferences.
Abstract:
An input device for an electronic device includes an enclosure and a top member defining an input surface having multiple differentiated input regions. The input device further includes a first force sensing system associated with a first area of the top member and including a first group of the differentiated input regions, and a second force sensing system associated with a second area of the top member and including a second group of the differentiated input regions. The input device further includes a touch sensing system configured to determine which input region from the first group of the differentiated input regions corresponds to the first force input and to determine which input region from the second group of the differentiated input regions corresponds to the second force input.
Abstract:
Systems and methods for decoupling the electrical and mechanical functionality of a depressible key are disclosed. The depressible key can include a non-contact proximity sensor, such as an optical sensor, to detect motion of the keycap. The output from the optical sensor is used to determine a distance, velocity, acceleration, and a force applied during a keypress.