Abstract:
In some implementations, a computing device can proactively determine a destination and request traffic information for routes from a starting location to the destination. In some implementations, a computing device can identify some routes between a starting location and a destination as non-recommended routes and recommend other routes. In some implementations, a computing device can rank routes between a starting location and a destination based on automatically-determined user interest. In some implementations, a computing device can determine a user is familiar with a route and adjust the information presented to the user about the route accordingly.
Abstract:
In some implementations, a computing device can proactively determine a destination and request traffic information for routes from a starting location to the destination. In some implementations, a computing device can identify some routes between a starting location and a destination as non-recommended routes and recommend other routes. In some implementations, a computing device can rank routes between a starting location and a destination based on automatically-determined user interest. In some implementations, a computing device can determine a user is familiar with a route and adjust the information presented to the user about the route accordingly.
Abstract:
An event can be detected by an input device. The event may be determined to be a triggering event by comparing the event to a group of triggering events. A first prediction model corresponding to the event is then selected. Contextual information about the device specifying one or more properties of the computing device in a first context is then received, and a set of one or more applications is identified. The set of one or more applications may have at least a threshold probability of being accessed by the user when the event occurs in the first context. Thereafter, a user interface is provided to a user for interacting with the set of one or more applications.
Abstract:
In some implementations, a computing device can proactively determine a destination and request traffic information for routes from a starting location to the destination. In some implementations, a computing device can identify some routes between a starting location and a destination as non-recommended routes and recommend other routes. In some implementations, a computing device can rank routes between a starting location and a destination based on automatically-determined user interest. In some implementations, a computing device can determine a user is familiar with a route and adjust the information presented to the user about the route accordingly.
Abstract:
Systems, methods, and apparatuses are provided for suggesting one or more applications to a user based on an event. A prediction model can correspond to a particular event. The suggested application can be determined using one or more properties of the computing device. For example, a particular sub-model can be generated from a subset of historical data that are about user interactions after occurrences of the event and that are gathered when the device has the one or more properties. A tree of sub-models may be determined corresponding to different contexts of properties of the computing device. And, various criteria can be used to determine when to generate a sub-model, e.g., a confidence level in the sub-model providing a correct prediction in the subset of historical data and an information gain (entropy decrease) in the distribution of the historical data relative to a parent model.
Abstract:
In some implementations, a computing device can proactively determine a destination and request traffic information for routes from a starting location to the destination. In some implementations, a computing device can identify some routes between a starting location and a destination as non-recommended routes and recommend other routes. In some implementations, a computing device can rank routes between a starting location and a destination based on automatically-determined user interest. In some implementations, a computing device can determine a user is familiar with a route and adjust the information presented to the user about the route accordingly.
Abstract:
Computer-implemented methods, computer-readable storage media storing instructions and computer systems for labeling significant locations based on contextual data can be implemented to perform operations that include determining a location of a computing device, and determining a label for the determined location based on contextual data associated with the significant location. The location can be a significant location that has meaning to a user of the device.
Abstract:
Computer-implemented methods, computer-readable storage media storing instructions and computer systems for labeling significant locations based on contextual data can be implemented to perform operations that include determining a location of a computing device, and determining a label for the determined location based on contextual data associated with the significant location. The location can be a significant location that has meaning to a user of the device.
Abstract:
Computer-implemented methods, computer-readable storage media storing instructions and computer systems for labeling significant locations based on contextual data can be implemented to perform operations that include determining a location of a computing device, and determining a label for the determined location based on contextual data associated with the significant location. The location can be a significant location that has meaning to a user of the device.
Abstract:
In an example method, a mobile device receives a first calendar item associated with a first event. The first calendar item includes a first text string. The mobile device determines a correlation between the first text string and one or more locations associated with one or more second events. The mobile device determines a suggested location for the first event based on the correlation.