Abstract:
Techniques to generate global tone-mapping operators (G-TMOs) that, when applied to high dynamic range images, visually approximate the use of spatially varying tone-mapping operators (SV-TMOs) are described. The disclosed G-TMOs provide substantially the same visual benefits as SV-TMOs but do not suffer from spatial artifacts such as halos and are, in addition, computationally efficient compared to SV-TMOs. In general, G-TMOs may be identified based on application of a SV-TMO to a down-sampled version of a full-resolution input image (e.g., a thumbnail). An optimized mapping between the SV-TMO's input and output constitutes the G-TMO. It has been unexpectedly discovered that when optimized (e.g., to minimize the error between the SV-TMO's input and output), G-TMOs so generated provide an excellent visual approximation to the SV-TMO (as applied to the full-resolution image).
Abstract:
Techniques to generate global tone-mapping operators (G-TMOs) that, when applied to high dynamic range images, visually approximate the use of spatially varying tone-mapping operators (SV-TMOs) are described. The disclosed G-TMOs provide substantially the same visual benefits as SV-TMOs but do not suffer from spatial artifacts such as halos and are, in addition, computationally efficient compared to SV-TMOs. In general, G-TMOs may be identified based on application of a SV-TMO to a down-sampled version of a full-resolution input image (e.g., a thumbnail). An optimized mapping between the SV-TMO's input and output constitutes the G-TMO. It has been unexpectedly discovered that when optimized (e.g., to minimize the error between the SV-TMO's input and output), G-TMOs so generated provide an excellent visual approximation to the SV-TMO (as applied to the full-resolution image).
Abstract:
Techniques to generate global tone-mapping operators (G-TMOs) that, when applied to high dynamic range images, visually approximate the use of spatially varying tone-mapping operators (SV-TMOs) are described. The disclosed G-TMOs provide substantially the same visual benefits as SV-TMOs but do not suffer from spatial artifacts such as halos and are, in addition, computationally efficient compared to SV-TMOs. In general, G-TMOs may be identified based on application of a SV-TMO to a down-sampled version of a full-resolution input image (e.g., a thumbnail). An optimized mapping between the SV-TMO's input and output constitutes the G-TMO. It has been unexpectedly discovered that when optimized (e.g., to minimize the error between the SV-TMO's input and output), G-TMOs so generated provide an excellent visual approximation to the SV-TMO (as applied to the full-resolution image).
Abstract:
Techniques to generate global tone-mapping operators (G-TMOs) that, when applied to high dynamic range images, visually approximate the use of spatially varying tone-mapping operators (SV-TMOs) are described. The disclosed G-TMOs provide substantially the same visual benefits as SV-TMOs but do not suffer from spatial artifacts such as halos and are, in addition, computationally efficient compared to SV-TMOs. In general, G-TMOs may be identified based on application of a SV-TMO to a down-sampled version of a full-resolution input image (e.g., a thumbnail). An optimized mapping between the SV-TMO's input and output constitutes the G-TMO. It has been unexpectedly discovered that when optimized (e.g., to minimize the error between the SV-TMO's input and output), G-TMOs so generated provide an excellent visual approximation to the SV-TMO (as applied to the full-resolution image).
Abstract:
Techniques to generate global tone-mapping operators (G-TMOs) that, when applied to high dynamic range images, visually approximate the use of spatially varying tone-mapping operators (SV-TMOs) are described. The disclosed G-TMOs provide substantially the same visual benefits as SV-TMOs but do not suffer from spatial artifacts such as halos and are, in addition, computationally efficient compared to SV-TMOs. In general, G-TMOs may be identified based on application of a SV-TMO to a down-sampled version of a full-resolution input image (e.g., a thumbnail). An optimized mapping between the SV-TMO's input and output constitutes the G-TMO. It has been unexpectedly discovered that when optimized (e.g., to minimize the error between the SV-TMO's input and output), G-TMOs so generated provide an excellent visual approximation to the SV-TMO (as applied to the full-resolution image).
Abstract:
Techniques to generate global tone-mapping operators (G-TMOs) that, when applied to high dynamic range images, visually approximate the use of spatially varying tone-mapping operators (SV-TMOs) are described. The disclosed G-TMOs provide substantially the same visual benefits as SV-TMOs but do not suffer from spatial artifacts such as halos and are, in addition, computationally efficient compared to SV-TMOs. In general, G-TMOs may be identified based on application of a SV-TMO to a down-sampled version of a full-resolution input image (e.g., a thumbnail). An optimized mapping between the SV-TMO's input and output constitutes the G-TMO. It has been unexpectedly discovered that when optimized (e.g., to minimize the error between the SV-TMO's input and output), G-TMOs so generated provide an excellent visual approximation to the SV-TMO (as applied to the full-resolution image).