Three dimensional user interface effects on a display
    4.
    发明授权
    Three dimensional user interface effects on a display 有权
    显示器上的三维用户界面效果

    公开(公告)号:US09411413B2

    公开(公告)日:2016-08-09

    申请号:US14329777

    申请日:2014-07-11

    Applicant: Apple Inc.

    Abstract: The techniques disclosed herein may use various sensors to infer a frame of reference for a hand-held device. In fact, with various inertial clues from accelerometer, gyrometer, and other instruments that report their states in real time, it is possible to track a Frenet frame of the device in real time to provide an instantaneous (or continuous) 3D frame-of-reference. In addition to—or in place of—calculating this instantaneous (or continuous) frame of reference, the position of a user's head may either be inferred or calculated directly by using one or more of a device's optical sensors, e.g., an optical camera, infrared camera, laser, etc. With knowledge of the 3D frame-of-reference for the display and/or knowledge of the position of the user's head, more realistic virtual 3D depictions of the graphical objects on the device's display may be created—and interacted with—by the user.

    Abstract translation: 本文公开的技术可以使用各种传感器来推断用于手持设备的参考帧。 事实上,由于来自加速度计,陀螺仪和其他实时报告其状态的仪器的各种惯性线索,可以实时跟踪设备的Frenet帧,以提供瞬时(或连续)3D帧 - 参考。 除了或代替计算这个瞬时(或连续的)参照系,用户头部的位置可以通过使用设备的一个或多个光学传感器(例如,光学摄像机)来直接推断或计算, 红外摄像机,激光器等。通过了解用于显示和/或用户头部位置的知识的3D参考框架,可以创建设备显示器上的图形对象的更逼真的虚拟3D描绘,以及 与用户进行交互。

    3D Lighting
    5.
    发明申请
    3D Lighting 审中-公开

    公开(公告)号:US20190206120A1

    公开(公告)日:2019-07-04

    申请号:US16291590

    申请日:2019-03-04

    Applicant: Apple Inc.

    Abstract: Techniques are disclosed for displaying a graphical element in a manner that simulates three-dimensional (3D) visibility (including parallax and shadowing). More particularly, a number of images, each captured with a known spatial relationship to a target 3D object, may be used to construct a lighting model of the target object. In one embodiment, for example, polynomial texture maps (PTM) using spherical or hemispherical harmonics may be used to do this. Using PTM techniques a relatively small number of basis images may be identified. When the target object is to be displayed, orientation information may be used to generate a combination of the basis images so as to simulate the 3D presentation of the target object.

    Ambient light adaptive displays
    7.
    发明授权
    Ambient light adaptive displays 有权
    环境光自适应显示

    公开(公告)号:US09478157B2

    公开(公告)日:2016-10-25

    申请号:US14673685

    申请日:2015-03-30

    Applicant: Apple Inc.

    Abstract: An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.

    Abstract translation: 电子设备可以包括具有显示像素阵列并具有控制显示器的操作的显示控制电路的显示器。 显示控制电路可以基于环境照明条件自适应地调整显示输出。 例如,在较冷的环境照明条件下,例如由日光控制的环境照明条件下,显示器可以使用相当冷的白色显示中性色。 当显示器在诸如由室内光源所主导的环境照明条件较暖的环境照明条件下操作时,显示器可以使用相对温暖的白色显示中性色。 适应环境照明条件可以确保用户在视觉色彩适应不同的环境照明条件时不会察觉显示器上的色彩偏移。 以这种方式自适应调整图像也可以通过在晚上显示温暖的颜色对人类昼夜节律有益。

    Three Dimensional User Interface Effects On A Display
    8.
    发明申请
    Three Dimensional User Interface Effects On A Display 有权
    三维用户界面对显示器的影响

    公开(公告)号:US20150009130A1

    公开(公告)日:2015-01-08

    申请号:US14329777

    申请日:2014-07-11

    Applicant: Apple Inc.

    Abstract: The techniques disclosed herein may use various sensors to infer a frame of reference for a hand-held device. In fact, with various inertial clues from accelerometer, gyrometer, and other instruments that report their states in real time, it is possible to track a Frenet frame of the device in real time to provide an instantaneous (or continuous) 3D frame-of-reference. In addition to—or in place of—calculating this instantaneous (or continuous) frame of reference, the position of a user's head may either be inferred or calculated directly by using one or more of a device's optical sensors, e.g., an optical camera, infrared camera, laser, etc. With knowledge of the 3D frame-of-reference for the display and/or knowledge of the position of the user's head, more realistic virtual 3D depictions of the graphical objects on the device's display may be created—and interacted with—by the user.

    Abstract translation: 本文公开的技术可以使用各种传感器来推断用于手持设备的参考帧。 事实上,由于来自加速度计,陀螺仪和其他实时报告其状态的仪器的各种惯性线索,可以实时跟踪设备的Frenet帧,以提供瞬时(或连续)3D帧 - 参考。 除了或代替计算这个瞬时(或连续的)参照系,用户头部的位置可以通过使用设备的一个或多个光学传感器(例如,光学摄像机)来直接推断或计算, 红外摄像机,激光器等。通过了解用于显示和/或用户头部位置的知识的3D参考框架,可以创建设备显示器上的图形对象的更逼真的虚拟3D描绘,以及 与用户进行交互。

    360 degree image presentation
    9.
    发明授权

    公开(公告)号:US10097759B1

    公开(公告)日:2018-10-09

    申请号:US15282821

    申请日:2016-09-30

    Applicant: Apple Inc.

    Abstract: Techniques are disclosed for stabilizing a stream of spherical images captured by an image capture device to produce a stabilized spherical video sequence. The rotation of the image capture device during capture may be corrected in one or more desired axial directions in a way that is agnostic to the translation of the image capture device. The rotation of the image capture device may also be corrected in one or more desired axial directions in a way that is aware of the translation of the image capture device. For example, the assembled output spherical video sequence may be corrected to maintain the horizon of the scene at a constant location, regardless of the translation of the image capture device (i.e., a ‘translation-agnostic’ correction), while simultaneously being corrected to maintain the yaw of the scene in the direction of the image capture device's translation through three-dimensional space (i.e., a ‘translation-aware’ correction).

    Camera field of view effects based on device orientation and scene content

    公开(公告)号:US09712751B2

    公开(公告)日:2017-07-18

    申请号:US14602832

    申请日:2015-01-22

    Applicant: Apple Inc.

    CPC classification number: H04N5/23293 H04N5/23229 H04N5/2628

    Abstract: Systems and methods to improve photo taking using an image capture device having a wide field of view (FOV) camera. In some embodiments, when the device is held in landscape orientation, a wide diagonal FOV may be displayed to the user on a preview screen of the device, and the landscape image may be captured in a wide, 16:9 aspect ratio. However, when the device is held in portrait orientation, the effective diagonal FOV of the device may be decreased via software and/or hardware, and a 4:3 aspect ratio image may be displayed and captured. In other embodiments, the captured portrait orientation image may be scaled, shifted, and/or cropped before being displayed to the user on the device's preview display screen, in such a manner that the user will naturally be inclined to hold the device in a position that will produce a more optimal self-portrait image.

Patent Agency Ranking