DYNAMIC COOLING CONTROL FOR THERMAL STABILIZATION FOR LITHOGRAPHY SYSTEM

    公开(公告)号:US20200272063A1

    公开(公告)日:2020-08-27

    申请号:US16284516

    申请日:2019-02-25

    Abstract: Embodiments described herein provide a system, a software application, and methods of a lithography process that provide at least one of the ability to decrease the stabilization time and write an exposure pattern into a photoresist on a substrate compensating for the change in the total pitch over a stabilization time. One embodiment of the system includes a slab, a stage disposed over the slab, a pair of supports disposed on the slab, a processing apparatus, and a chiller system. The pair of supports support a pair of tracks and the stage is configured to move along the pair of tracks. The processing apparatus has an apparatus support coupled to the slab and a processing unit supported by the apparatus support. The processing unit has a plurality of image projection systems. The chiller system has at least one fluid channel disposed in each track of the pair of tracks.

    DYNAMIC COOLING CONTROL FOR THERMAL STABILIZATION FOR LITHOGRAPHY SYSTEM

    公开(公告)号:US20210011390A1

    公开(公告)日:2021-01-14

    申请号:US17035105

    申请日:2020-09-28

    Abstract: Embodiments described herein provide a system, a software application, and methods of a lithography process that provide at least one of the ability to decrease the stabilization time and write an exposure pattern into a photoresist on a substrate compensating for the change in the total pitch over a stabilization time. One embodiment of the system includes a slab, a stage disposed over the slab, a pair of supports disposed on the slab, a processing apparatus, and a chiller system. The pair of supports support a pair of tracks and the stage is configured to move along the pair of tracks. The processing apparatus has an apparatus support coupled to the slab and a processing unit supported by the apparatus support. The processing unit has a plurality of image projection systems. The chiller system has at least one fluid channel disposed in each track of the pair of tracks.

    METHOD FOR FAST LOADING SUBSTRATES IN A FLAT PANEL TOOL

    公开(公告)号:US20210149308A1

    公开(公告)日:2021-05-20

    申请号:US17157634

    申请日:2021-01-25

    Abstract: The present disclosure generally relates to a method and apparatus for loading, processing, and unloading substrates. A processing system comprises a load/unload system coupled to a photolithography system. The load/unload system comprises a first set of tracks having a first height and a first width, and a second set of tracks having a second height and a second width different than the first height and first width. An unprocessed substrate is transferred from a lift pin loader to a chuck along the first set of tracks on a first tray while a processed substrate is transferred from the chuck to the lift pin loader along the second set of tracks on a second tray. While a first tray remains with a substrate on the chuck during processing, the load/unload system is configured to unload a processed substrate and load an unprocessed substrate on a second tray.

    INTERFEROMETRY SYSTEM AND METHODS FOR SUBSTRATE PROCESSING

    公开(公告)号:US20200011652A1

    公开(公告)日:2020-01-09

    申请号:US16026982

    申请日:2018-07-03

    Abstract: Processing systems and methods used in the manufacturing of flat panel displays (FPDs) are provided herein. In one embodiment, a processing system features a motion stage movably disposed on a base surface, one or more X-position interferometers, and a plurality of Y-position interferometers. The X-position interferometers include an X-position mirror fixedly coupled to the motion stage and an X-axis stationary module fixedly coupled a non-moving surface of processing system. Each of the plurality of Y-position interferometers include one of a first or second Y-position mirror fixedly coupled to the motion stage in orthogonal relationship to the one or more X-position mirrors and one of a first or a second Y-axis stationary module fixedly coupled to a non-moving surface of the processing system. Here, each of the Y-axis stationary modules is positioned to direct coherent radiation towards a respective Y-position mirror when the Y-position interferometer thereof is in an active arrangement.

Patent Agency Ranking