METHODS FOR FORMING PROTECTIVE COATINGS CONTAINING CRYSTALLIZED ALUMINUM OXIDE

    公开(公告)号:US20230002897A1

    公开(公告)日:2023-01-05

    申请号:US17939655

    申请日:2022-09-07

    Abstract: Embodiments of the present disclosure generally relate to protective coatings on substrates and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on a substrate includes depositing a chromium oxide layer containing amorphous chromium oxide on a surface of the substrate during a first vapor deposition process and heating the substrate containing the chromium oxide layer comprising the amorphous chromium oxide to convert at least a portion of the amorphous chromium oxide to crystalline chromium oxide during a first annealing process. The method also includes depositing an aluminum oxide layer containing amorphous aluminum oxide on the chromium oxide layer during a second vapor deposition process and heating the substrate containing the aluminum oxide layer disposed on the chromium oxide layer to convert at least a portion of the amorphous aluminum oxide to crystalline aluminum oxide during a second annealing process.

    METHODS FOR CLEANING AEROSPACE COMPONENTS

    公开(公告)号:US20220055772A1

    公开(公告)日:2022-02-24

    申请号:US17404823

    申请日:2021-08-17

    Abstract: Embodiments of the present disclosure generally relate to methods for cleaning aerospace components having oxidation, corrosion, contaminants, and/or other degradations. In one or more embodiments, a cleaning method includes positioning the aerospace component into a processing region of a processing chamber, introducing hydrogen gas into the processing region, maintaining the processing region at a pressure of about 100 mTorr to about 5,000 mTorr, and heating the aerospace component at a temperature of about 500° C. to about 1,200° C. for about 0.5 hours to about 24 hours to produce a cleaned surface on the aerospace component. In other embodiments, a cleaning method includes exposing the aerospace component to ozone while maintaining the aerospace component at a temperature of about 15° C. to about 500° C. for 0.25 hours to about 24 hours to produce a cleaned surface on the aerospace component.

    METHODS FOR FORMING PROTECTIVE COATINGS CONTAINING CRYSTALLIZED ALUMINUM OXIDE

    公开(公告)号:US20210071299A1

    公开(公告)日:2021-03-11

    申请号:US16670555

    申请日:2019-10-31

    Abstract: Embodiments of the present disclosure generally relate to protective coatings on substrates and methods for depositing the protective coatings. In one or more embodiments, a method of forming a protective coating on a substrate includes depositing a chromium oxide layer containing amorphous chromium oxide on a surface of the substrate during a first vapor deposition process and heating the substrate containing the chromium oxide layer comprising the amorphous chromium oxide to convert at least a portion of the amorphous chromium oxide to crystalline chromium oxide during a first annealing process. The method also includes depositing an aluminum oxide layer containing amorphous aluminum oxide on the chromium oxide layer during a second vapor deposition process and heating the substrate containing the aluminum oxide layer disposed on the chromium oxide layer to convert at least a portion of the amorphous aluminum oxide to crystalline aluminum oxide during a second annealing process.

    ANODE STRUCTURE WITH BINDERS FOR SILICON AND STABILIZED LITHIUM METAL POWDER

    公开(公告)号:US20190013513A1

    公开(公告)日:2019-01-10

    申请号:US16067795

    申请日:2017-01-04

    Abstract: A simple solution processing method is developed to achieve uniform and scalable stabilized lithium metal powder coating on Li-ion negative electrode. A solvent and binder system for stabilized lithium metal powder coating is developed, including the selection of solvent, polymer binder and enhancement of polymer concentration. The enhanced binder solution is 1% concentration of polymer binder in xylene, and the polymer binder is chosen as the mixture of poly(styrene-co-butadiene) rubber (SBR) and polystyrene (PS). Long-sustained, uniformly dispersed stabilized lithium metal powder suspension can be achieved with the enhanced binder solution. A uniform stabilized lithium metal powder coating can be achieved with simple doctor blade coating method and the resulting stabilized lithium metal powder coating can firmly glued on the anode surface. With the prelithiation of negative electrode by stabilized lithium metal powder, improvements in electrochemical performances are demonstrated in both graphite/NMC and SiO/NMC full-cell.

Patent Agency Ranking