Abstract:
An electron beam imaging apparatus capable of projecting an electron beam image on a substrate comprises a vacuum chamber having a wall and a substrate support. An electron beam source, modulator, and scanner is provided to generate, modulate, and scan one or more electron beams across the substrate. A controller is capable of generating or receiving an electrical signal to communicate with the electron beam source, modulator or scanner. One or more signal convertors are capable of converting the electrical signal to an optical signal and vice versa, the signal convertors located on either side of the wall. An optical signal carrier is capable of transmitting the optical signal through the wall of the chamber
Abstract:
An electron beam source has a photocathode with a photoemitter material having a work function, and with a beam receiving portion and an electron emitting portion. A first light source directs a first light beam onto the beam receiving portion of the photocathode to generate an electron beam from the electron emitting portion. The first light beam has a wavelength null1 such that hc/null1 is at least about the work function of the photoemitter material, where nullhnull is Planck's constant and nullcnull is the speed of light. A second light source directs a second light beam onto the beam receiving portion of the photocathode, such as onto the beam receiving portion, to stabilize the electron beam. The second light beam having a wavelength null2 such that hc/null2 is less than about the work function of the photoemitter material.