Abstract:
Disclosed herein are a high-voltage generator for an x-ray source, an x-ray gun, an electron beam apparatus, a rotary vacuum seal, a target assembly for an x-ray source, a rotary x-ray emission target, and an x-ray source. These various aspects may separately and/or together enable the construction of an x-ray source which can operate at energies of up to 500 kV and beyond, which is suitable for use in commercial and research x-ray applications such as computerised tomography. In particular, the high-voltage generator includes a shield electrode electrically connected intermediate of a first voltage multiplier and a second voltage multiplier. The electron beam apparatus includes control photodetectors and photo emitters having a transparent conductive shield arranged therebetween. The rotary vacuum seal includes a pumpable chamber at a position intermediate between high-pressure and low-pressure ends of a bore for a rotating shaft. The rotary target assembly is configured such that when a torque between a bearing housing and a vacuum housing exceeds a predetermined torque, the bearing housing rotates relative to the vacuum housing. The rotary x-ray emission target has a plurality of target plates supported on a hub, the plates being arranged on the hub to provide an annular target region about an axis rotation of the hub. The x-ray gun is provided with a shield electrode maintained at a potential difference relative to the x-ray target different to the electron beam emission cathode.
Abstract:
A microwave supply apparatus includes a waveguide, a circulator, and a matcher, a first port of the circulator receives a microwave from an input end. First and second ends of the waveguide are coupled to second and third ports of the circulator, respectively. The matcher is provided between the input end and the first port of the circulator. The waveguide includes a rectangular waveguide having first and second walls facing each other, and third and fourth walls facing each other. A slot hole is formed in the first wall, and the slot hole is provided at a region deviated to the third wall side. The waveguide includes a first ridge portion provided therein. The first ridge portion faces the slot hole, is in contact with the second wall and third wall, and is separated from the first wall and fourth wall.
Abstract:
The present invention relates to a method for mutually aligning a scanning electron microscope SEM and a light microscope LM by creating a change (61) in the detected light signal of the light microscope LM by illuminating a substrate with an electron beam, correlating the position of the electron beam in the coordinate system of the scanning electron microscope SEM to the position of the observed change in the detected light signal in the coordinate system of the light microscope LM, and relatively shifting the scanning electron microscope SEM and the light microscope LM with respect to one another to a desired relative position of the coordinate systems (60, 62).
Abstract:
An electron microscope system includes a laser system operable to generate an optical pulse and a pump pulse and a microscope column. The microscope column includes a multiple cathode structure having a plurality of spatially separated cathode regions. Each of the cathode regions are operable to generate an electron pulse. The microscope column also includes an electron acceleration region adjacent the multiple cathode structure, a specimen region operable to support a specimen, and a detector.
Abstract:
The present invention relates to a method for mutually aligning a scanning electron microscope SEM and a light microscope LM by creating a change (61) in the detected light signal of the light microscope LM by illuminating a substrate with an electron beam, correlating the position of the electron beam in the coordinate system of the scanning electron microscope SEM to the position of the observed change in the detected light signal in the coordinate system of the light microscope LM, and relatively shifting the scanning electron microscope SEM and the light microscope LM with respect to one another to a desired relative position of the coordinate systems (60, 62).
Abstract:
Determining electromagnetic response of sample structure having predetermined bulk permittivity and permeability, to electron and radiation pulses, includes calculating electron pulse response of sample structure to electron pulse excitation, using finite-difference time-domain method. Electron pulse excitation is represented by non-singular current source driven by relativistic moving non-Coulombian electron charges, electron pulse response is calculated based on interaction of electron pulse excitation with electromagnetic modes of sample structure at laboratory frame, and electron pulse response depends on bulk permittivity and permeability of sample structure, calculating radiation response of sample structure to electromagnetic radiation excitation, using finite-difference time-domain method. Radiation response depends on bulk permittivity and permeability of sample structure, and providing electromagnetic response of sample structure by superimposing electron pulse response and radiation response. Electromagnetic response comprises electron-energy-loss spectra and/or experienced phase of electron wave functions after interacting with photons of electromagnetic radiation excitation. Method and measuring apparatus are also described.
Abstract:
An optical system includes a beam splitter disposed along an optical axis and a set of mirrors optically coupled to the beam splitter. The set of mirrors are oriented perpendicular to each other. The optical system also includes a turning mirror optically coupled to a second mirror of the set of mirrors and a detector optically coupled to the turning mirror.
Abstract:
A lithography apparatus includes a first measurement device which measures a position of a mark on a substrate with light, a second measurement device which measures a position of a reference mark on a stage with a charged-particle, a detector which detects the position of the stage in a first direction parallel to the axis of a projection system and a second direction perpendicular to this axis, and a controller. The controller determines a charged-particle beam, in which the angle, with respect to the first direction, at which it is incident on the reference mark falls within a tolerance, and obtains a baseline for the first measurement device from the position of the reference mark measured by the second measurement device using the determined charged-particle beam and the position of the reference mark measured by the first measurement device.
Abstract:
A detection apparatus includes an optical system including a polarization beam splitter and a quarter-wave plate. The optical system illuminates a mark via the polarization beam splitter and the quarter-wave plate in sequence, and directs light reflected from the mark via the quarter-wave plate and the polarization beam splitter in sequence towards a light-receiving element An airtight container configured to enclose therein at least part of the optical system includes, as a partition wall thereof, a light transmitting member arranged in an optical path between the polarization beam splitter and the quarter-wave plate.
Abstract:
An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.