摘要:
A thermal sensor is provided that includes a front-end component, an analog-to-digital converter and a digital backend. The front-end component including an array of current sources, a dynamic element matching (DEM) device, an analog chopper and two diodes to sense temperatures on the die. The front-end component to provide analog signals at two output nodes based on currents through the two diodes. The analog-to-digital converter to receive the analog signals from the front-end component and to provide an output signal. The digital backend to receive the output signal from the analog-to-digital converter and to provide a calculated temperature.
摘要:
A thermal sensor is provided that includes a front-end component, an analog-to-digital converter and a digital backend. The front-end component including an array of current sources, a dynamic element matching (DEM) device, an analog chopper and two diodes to sense temperatures on the die. The front-end component to provide analog signals at two output nodes based on currents through the two diodes. The analog-to-digital converter to receive the analog signals from the front-end component and to provide an output signal. The digital backend to receive the output signal from the analog-to-digital converter and to provide a calculated temperature.
摘要:
A thermal sensor is provided that includes a front-end component, an analog-to-digital converter and a digital backend. The front-end component including an array of current sources, a dynamic element matching (DEM) device, an analog chopper and two diodes to sense temperatures on the die. The front-end component to provide analog signals at two output nodes based on currents through the two diodes. The analog-to-digital converter to receive the analog signals from the front-end component and to provide an output signal. The digital backend to receive the output signal from the analog-to-digital converter and to provide a calculated temperature.
摘要:
A thermal sensor is provided that includes a front-end component, an analog-to-digital converter and a digital backend. The front-end component including an array of current sources, a dynamic element matching (DEM) device, an analog chopper and two diodes to sense temperatures on the die. The front-end component to provide analog signals at two output nodes based on currents through the two diodes. The analog-to-digital converter to receive the analog signals from the front-end component and to provide an output signal. The digital backend to receive the output signal from the analog-to-digital converter and to provide a calculated temperature.
摘要:
Film bulk acoustic resonators (FBARS) have resonant frequencies that vary with manufacturing variations, but tend to be matched when in proximity on an integrated circuit die. FBAR resonant frequency is determined using a fractional-N synthesizer and comparing phase/frequency of an output signal from the fractional-N synthesizer to a reference. The reference may be derived from a low frequency crystal oscillator, an external signal source, or a communications signal.
摘要:
Embodiments provide apparatuses, systems, and methods to convert an analog signal input into a sigma-delta digital output at a high sampling rate and correct for noise components of the digital output. An analog filter coupled to a sigma-delta converter accepts a noise-shaped analog signal from the sigma-delta converter to attenuate signal components of the noise-shaped analog signal at a plurality of folding frequencies associated with a sampling rate of a low-speed Analog-To-Digital (ADC) to produce a filtered output. The low-speed ADC is coupled to an output of the analog filter and samples the filtered output of the analog filter at a sampling rate slower than the high sample rate to output an ADC digital output. Other embodiments may be described and claimed.
摘要:
Film bulk acoustic resonators (FBARS) have resonant frequencies that vary with manufacturing variations, but tend to be matched when in proximity on an integrated circuit die. FBAR resonant frequency is determined using a fractional-N synthesizer and comparing phase/frequency of an output signal from the fractional-N synthesizer to a reference. The reference may be derived from a low frequency crystal oscillator, an external signal source, or a communications signal.
摘要:
A receiver and a method for controlling power consumption therein are disclosed. The receiver comprises at least one front-end module, an amplifier, an Analog to Digital Converter (ADC) module, a spectrum analyzer and a control module. The at least one front-module is configured to receive and process a RF signal to obtain an IF signal. The amplifier is configured to amplify the IF signal received from the at least one front-end module with a variable gain. The ADC module receives the amplified IF signal and converts into a digital signal. Further, the spectrum analyzer estimates a power level of a signal information and a power level of a noise in the digital signal. Thereafter, the control module controls a variable gain of the amplifier and a variable dynamic range of the ADC based on the power level of the signal information and the noise in the digital signal.
摘要:
Embodiments provide apparatuses, systems, and methods to convert an analog signal input into a sigma-delta digital output at a high sampling rate and correct for noise components of the digital output. An analog filter coupled to a sigma-delta converter accepts a noise-shaped analog signal from the sigma-delta converter to attenuate signal components of the noise-shaped analog signal at a plurality of folding frequencies associated with a sampling rate of a low-speed Analog-To-Digital (ADC) to produce a filtered output. The low-speed ADC is coupled to an output of the analog filter and samples the filtered output of the analog filter at a sampling rate slower than the high sample rate to output an ADC digital output. Other embodiments may be described and claimed.
摘要:
This document discusses apparatus and methods for compensating non-linearity of digital-to-time converters (DTCs). In an example, a wireless device can include a digital-to-time converter (DTC) configured to receive a phase data information from a baseband processor and to provide a first modulation signal for generating a wireless signal, a detector configure to receive the first modulation signal and provide an indication of nonlinearities of the DTC, and a pre-distortion module configured to provide pre-distortion information to the DTC using the indication of nonlinearities.