摘要:
The present invention provides autoradiography methods and systems for imaging via the detection of alpha particles, beta particles, or other charged particles. Embodiments of the methods and systems provide high-resolution 3D imaging of the distribution of a radioactive probe, such as a radiopharmaceutical, on a tissue sample. Embodiments of the present methods and systems provide imaging of tissue samples by reconstruction of a 3D distribution of a source of particles, such as a radiopharmaceutical. Embodiments of the methods and systems provide tomographic methods including microtomography, macrotomography, cryomicrotomography and cryomacrotomography.
摘要:
The present invention provides methods and systems for 3D imaging of in vivo and ex vivo tissues. The disclosed systems and methods employ an autoradiographic approach where particles emitted by a radioactive composition within the tissue are detected. Once detected, a 3D representation of the source of particles within the tissue is reconstructed for viewing and analysis.
摘要:
The present invention provides autoradiography methods and systems for imaging via the detection of alpha particles, beta particles, or other charged particles. Embodiments of the methods and systems provide high-resolution 3D imaging of the distribution of a radioactive probe, such as a radiopharmaceutical, on a tissue sample. Embodiments of the present methods and systems provide imaging of tissue samples by reconstruction of a 3D distribution of a source of particles, such as a radiopharmaceutical. Embodiments of the methods and systems provide tomographic methods including microtomography, macrotomography, cryomicrotomography and cryomacrotomography.
摘要:
The present invention provides methods and systems for 3D imaging of in vivo and ex vivo tissues. The disclosed systems and methods employ an autoradiographic approach where particles emitted by a radioactive composition within the tissue are detected. Once detected, a 3D representation of the source of particles within the tissue is reconstructed for viewing and analysis.
摘要:
The present invention provides autoradiography methods and systems for imaging via the detection of alpha particles, beta particles, or other charged particles. Embodiments of the methods and systems provide high-resolution 3D imaging of the distribution of a radioactive probe, such as a radiopharmaceutical, on a tissue sample. Embodiments of the present methods and systems provide imaging of tissue samples by reconstruction of a 3D distribution of a source of particles, such as a radiopharmaceutical. Embodiments of the methods and systems provide tomographic methods including microtomography, macrotomography, cryomicrotomography and cryomacrotomography.
摘要:
Many biologic processes taking place inside a living organism are unpredictable in time and space, and cannot be known exactly. These mechanisms and interactions among them are better modeled as physiological random processes, the statistics of which are fully described by joint characteristic functionals. The present invention provides methods for the estimation of joint characteristic functionals through imaging of multiple physiological random processes. This technology can be used to study complex diseases, such as tumors and viral infections, by imaging the biological processes involved with disease progression and response to treatment.
摘要:
The present invention provides methods and systems for manipulating radiance data obtained from a radiance sensor that includes a lenslet array and a photodetector array, where the manipulation of the radiance data uses one or more algorithms or mathematical transformations applied by a software program. Manipulating the measured radiance data computationally produces the same optical effects of a desired optical system without having to insert the optical system into the optical path of the electromagnetic radiation. The manipulated radiance data is then used to generate an image.