摘要:
Aspects of a method and system for precise current matching in deep sub-micron technology may include adjusting a current mirror to compensate for MOSFET gate leakage currents by using feedback circuits. The feedback circuits may be implemented from active components to create active feedback circuits. If the reference current to be mirrored is noisy, a smoothing effect may be achieved by introducing a low-pass filter coupled to the current mirror design. The active feedback may comprise amplifiers, which may comprise one or more amplifier stages. The amplifier may amplify either a bias voltage error or a bias current error. Furthermore, a transimpedance amplifier may be utilized in the feedback loop. The output bias current of the current mirror may be stabilized dynamically during adjusting. Multiple current sources may be utilized in the current mirrors.
摘要:
Aspects of a method and system for precise current matching in deep sub-micron technology may include adjusting a current mirror to compensate for MOSFET gate leakage currents by using feedback circuits. The feedback circuits may be implemented from active components to create active feedback circuits. If the reference current to be mirrored is noisy, a smoothing effect may be achieved by introducing a low-pass filter coupled to the current mirror design. The active feedback may comprise amplifiers, which may comprise one or more amplifier stages. The amplifier may amplify either a bias voltage error or a bias current error. Furthermore, a transimpedance amplifier may be utilized in the feedback loop. The output bias current of the current mirror may be stabilized dynamically during adjusting. Multiple current sources may be utilized in the current mirrors.
摘要:
Certain aspects of a method and system for a process sensor to compensate SoC parameters in the presence of IC process manufacturing variations are disclosed. Aspects of one method may include determining an amount of process variation associated with at least one transistor within a single integrated circuit. The determined amount of process variation may be compensated by utilizing a process dependent current, a bandgap current, and a current associated with a present temperature of the transistor. The process dependent current, the bandgap current and the current associated with the present temperature of the transistor may be combined to generate an output current. A voltage generated across a variable resistor may be determined based on the generated output current.
摘要:
Certain aspects of a method and system for a process sensor to compensate SoC parameters in the presence of IC process manufacturing variations are disclosed. Aspects of one method may include determining an amount of process variation associated with at least one transistor within a single integrated circuit. The determined amount of process variation may be compensated by utilizing a process dependent current, a bandgap current, and a current associated with a present temperature of the transistor. The process dependent current, the bandgap current and the current associated with the present temperature of the transistor may be combined to generate an output current. A voltage generated across a variable resistor may be determined based on the generated output current.
摘要:
Certain aspects of a method and system for a process sensor to compensate SoC parameters in the presence of IC process manufacturing variations are disclosed. Aspects of one method may include determining an amount of process variation associated with at least one transistor within a single integrated circuit. The determined amount of process variation may be compensated by utilizing a process dependent current, a bandgap current, and a current associated with a present temperature of the transistor. The process dependent current, the bandgap current and the current associated with the present temperature of the transistor may be combined to generate an output current. A voltage generated across a variable resistor may be determined based on the generated output current.
摘要:
Certain aspects of a method and system for a process sensor to compensate SoC parameters in the presence of IC process manufacturing variations are disclosed. Aspects of one method may include determining an amount of process variation associated with at least one transistor within a single integrated circuit. The determined amount of process variation may be compensated by utilizing a process dependent current, a bandgap current, and a current associated with a present temperature of the transistor. The process dependent current, the bandgap current and the current associated with the present temperature of the transistor may be combined to generate an output current. A voltage generated across a variable resistor may be determined based on the generated output current.
摘要:
Certain aspects of a method and system for mitigating effects of pulling in multiple phase locked loops in multi-standard systems may include selecting an input frequency range of operation at a voltage controlled oscillator based on a particular wireless band of operation in a system that handles a first wireless communication protocol and a second wireless communication protocol. An image rejection mixer may be enabled to generate an output signal for the particular wireless band of operation based on mixing a plurality of received signals within a selected frequency range. An in-phase (I) component and a quadrature (Q) component of the generated output signal may be generated by utilizing a RC-CR quadrature network.
摘要:
Certain aspects of a method and system for mitigating effects of pulling in multiple phase locked loops in multi-standard systems may include selecting an input frequency range of operation at a voltage controlled oscillator based on a particular wireless band of operation in a system that handles a first wireless communication protocol and a second wireless communication protocol. An image rejection mixer may be enabled to generate an output signal for the particular wireless band of operation based on mixing a plurality of received signals within a selected frequency range. An in-phase (I) component and a quadrature (Q) component of the generated output signal may be generated by utilizing a RC-CR quadrature network.
摘要:
Aspects of a method and system for signal processing are disclosed and may include using a frequency doubler to double the frequency of a reference signal utilized by a phase-frequency detector (PFD) in a fractional-N phase-locked-loop (PLL) synthesizer. Detecting and correcting a digital reference signal connected to the input of the frequency doubler. The digital reference signal may be generated by amplifying the difference between a low slew-rate reference signal and a reference voltage through a comparator. The reference voltage signal may be generated based on the detected duty-cycle of the digital reference signal. The duty-cycle of the digital reference signal may be adjusted by varying the generated reference voltage signal. The reference voltage may be generated by using difference of DC level of the digital reference signal and half rail. The reference voltage signal may be generated using a voltage digital-to-analog converter (DAC).
摘要:
Certain aspects of a method and system for mitigating effects of pulling in multiple phase locked loops in multi-standard systems may include selecting an input frequency range of operation at a voltage controlled oscillator based on a particular wireless band of operation in a system that handles a first wireless communication protocol and a second wireless communication protocol. An image rejection mixer may be enabled to generate an output signal for the particular wireless band of operation based on mixing a plurality of received signals within a selected frequency range. An in-phase (I) component and a quadrature (Q) component of the generated output signal may be generated by utilizing a RC-CR quadrature network.